

Overview

Strava and Strava Metro Overview Background

Strava Metro Products
How it works
Uses

Strava Metro Use Cases

How are other cities using Metro?
Partner Organizations
Questions

What is Strava?

The Social Network for Cyclists and Runners

Activity tracking via GPS

Over 20 million global users

San Francisco based, 140 employees

Mobile \& Web Interface

11 million uploads per week

Growing at 25% annually

The Heart of Strava: Community

Strava by the Numbers

- 6.3 activities uploaded per second
- 4 Trillion+ second by second GPS points globally
- 11 million+ activities uploaded per week currently
- 300 million+ activities uploaded last year
- 20 Million users - Globally
- 1 Million new users added every 12 weeks

Strava by the Numbers - Washington COG 2016

County	State/Region	Country	Unique Athletes	Activities
DISTRICT OF COLUMBIA	DISTRICT OF COLUMBIA	USA	44,021	802,356
MONTGOMERY COUNTY	MARYLAND	USA	32686	585259
PRINCE GEORGE'S COUNTY	MARYLAND	USA	20285	279363
FREDERICK COUNTY	MARYLAND	USA	10147	81959
CHARLES COUNTY	MARYLAND	USA	6890	45022
ARLINGTON COUNTY	VIRGINIA	USA	41743	726703
FAIRFAX COUNTY	VIRGINIA	USA	36396	723659
LOUDOUN COUNTY	VIRGINIA	USA	16071	178043
ALEXANDRIA CITY	VIRGINIA	USA	13728	195238
FALLS CHURCH CITY	VIRGINIA	USA	9648	141015
PRINCE WILLIAM COUNTY	VIRGINIA	USA	8949	88750
FAIRFAX CITY	VIRGINIA	USA	3085	40213
MANASSAS PARK CITY	VIRGINIA	USA	1739	11453
MANASSAS CITY	VIRGINIA	USA	1690	12230
		Totals	247,078	3,911,263

Strava Metro History \& Background

Abbreviated Timeline

2012 / 2013

- Strava GEO group is formed out of Hanover, NH, Heat map goes viral
- Strava develops Route Builder: best route from point A to B based on user curated data
- DOTs begin contacting Strava
- Beta R\&D partnership with Metro Orlando \& OR-DOT

2014

- Strava Metro officially launches
- Metro Streets product delivered to Oregon DOT
- Nodes and Origin/Destination added to product

2015

- Web visualization component added to Metro
- Ended 2015 with over 70 organizations using Metro

2016

- Built customer success team
- Goal: end year with over 100 partner organizations

2017

- Added 3 more States (TX, UT \& CO)

Metro Data Covers the Spectrum for Bike/Ped Planning Actions

Discovery

Implementation

> Prediction

Data-Driven Bike and Pedestrian Planning

- Aggregated, anonymized activity data from Strava's tens of millions of users
- Allows for analysis of routes (popular or avoided), peak commute times, intersection behavior times, and origin/destination zones
- Processed for compatibility with Geographic Information System (GIS) and relational database environments
- Includes DataView for in-browser visualization

Identifying Core Route Choice By Temporal Choice

Rock Creek Park, Washington DC

Weekday

Weekend

Locate Key Commute vs. Recreation Routes
Seattle, Washington

Recreation
STRAVA | METRO

Metro Products

Enterprise - Traditional GIS Layers
DataView - SaaS Viewing Toot

Enterprise GIS Content

PRODUCT LAYERS AND CONTENTS

This section outlines what is contained in a delivery of Strava Metro. The Strava Metro product is evolving constantly as we locate and build in key features. The delivery contains the following data files:

- .csv/.sql raw hourly data file.
- .dbf rolled-up views in the cycling data (listed in the table on the following page).
- Streets polyline file.
- Origin/Destination data table raw.
- Origin/Destination Polygon.
- Nodes data table raw.
- Nodes point file.
- Demographics document.
- Product description document.

Streets

Minute by minute reports of cycling/pedestrian data
Preferred direction
Unique bike/ped trips
Unique user counts
Trip purpose e.g. commute (AM/PM) Time/Date/Season/Speed

Understand how behavior changes on your entire street network by time of day, day of week, or after new infrastructure is built.

Origin and Destination

Polygonal starting and ending points of all cycling \& pedestrian trips
Reported by the minute
350 meter hex ensures privacy
Trip purpose flag
Array of intersected polygon IDs

Strava OD Demand Modeling

DC Trips and OD migration to the city center

Starting_Polygon Ending_Polygon Count_Activities_Before_Noon Count_Activities_After_Noon Count_Total_Activities

18	146450		1	1
18	146502		4	4
24	29786		1	1
24	101268	- 1		1
24	151569	1	1	2
25	2739	1		1
25	15571		1	1
25	53168		1	1
25	54397		1	1
25	73827	1		1
25	75851		2	2
25	78139		1	1
25	94485	1		1
25	121738		1	1
27	15702	1		1
31	61284	1		1
42	299	2	4	6

Intersections

Crossing times at intersections Congregation of users at intersections Minute by minute w/ purpose flag

Understand which intersections have the highest cross times by:

Time of day
Day of week
Overlay with weather data to see how storms alter intersection behavior.

STRAVA | METRO

Greenville, SC
65296 Activities, 4945 Cyclists
Data View

Rides	Commutes	Cyclists	Heat

Intersections	Origin Destination

Bumamopione

Base	Map
carkions satellite	

counts By View

Strava Metro makes. iding, runing
and wakking in oties better.

Commutes

- Commutes are the \#1 requested data feature in Strava Metro.
- Activities in urban areas are commutes 40% - 60% of the time (High of 80% in London).
- Commutes and recreation rides in urban areas have very high correlation in route choice.
- Use stat tools to provide Quick Views into hourly volumes

Quick Views into AM/PM Commute Windows

Demographics Data

- Rolled-up counts of users in the data files
- Breakdown of age and gender from users
- Time in seconds
- Distance in meters

Metro Demographics
Date Run: 2017-05-03 05:29:26 +0000

```
Athlete ID Count: 55537
Activity Count: 970072
Average Distance: 27575.551311527561
Median Distance: 20716
Average Time: 6200.8644456698604070
Median Time: 5066
Male Count: 41831
Male Count Under 25: 3079
Male Count 25 - 34: 7976
Male Count 35 - 44: 10787
Male Count 45 - 54: 7602
Male Count 55 - 64: 3024
Male Count 65 - 74: 723
Male Count 75 - 84: 73
Male Count 85-94: 5
Male Count No Bday: }853
Female Count: 10666
Female Count Under 25: 804
Female Count 25 - 34: 2499
Female Count 35 - 44: 2635
Female Count 45 - 54: 1510
Female Count 55 - 64: 609
Female Count 65 - 74: 100
Female Count 75 - 84: 10
Female Count 85 - 94: 0
Female Count No Bday: 2495
Blank Gender Count: 0
Average Uploads: 271.0605
Commute Counts: 252465
```


Heatmap

-The Heatmap is compatible with: ArcGIS Online, ArcMap, and QGIS

- Overlay with your basemap to check for missing/misaligned geometry

Basemap Basics

Important to think about multi-modal transportation

- Should include all:
- Streets
- Roads
- Trails
- Paths
- And should break at all intersections (decision points)
- We will default to Open Street Map unless a basemap is provided

DataView

Interactive SaaS based map for immediate insight into cycling behaviorwithout the need for complex GIS analyses

1) counts of users, activities + commutes
2) intersection pass through times
3) origin-destination polygons

STRAVA \mid METRO

4) heat map GPS traces

DataView - Control Panel

STRAVA | METRO

Legend
(A) date range and total activity counts
(B) view toggles
(C) intersections button
(D) origin/destination toggle button
(E) basemap controls
(F) street legend
(G) Map navigation

STRAVA \mid METRO

DataView - Rides

- Shows total count of unique activities on each road or trail segment
- Hover over a street to view counts
- Street legend updates to provide the color variances
- Dark blue signifies lowest counts and dark red signifies highest

Helsinki, Finland
01/01/2016-12/31/2016
238,010 Activities, 5,738
Cyclists

Base Map Options
dark
satellite

Counts By View
$\begin{array}{llllllll}0 & 222 & 679 & 1402 & 2154 & 3036 & 12837\end{array}$
Rides

DataView - Commutes

- Shows count of unique commute activities per road segment
- Commuter data is found through automated process that locates point-to-point cycling
- The street legend will update to reflect the counts and representing colors for this view

Helsinki, Finland

DataView - Cyclists

- Shows total count of unique cyclists that rode on each road or trail segment
- Legend will then update to reflect the colors for cyclists counts Helsinki, Finland 01/01/2016-12/31/2016 238,010 Activities, 5,738

Cyclists

Base Map Options

dark	satellite

Counts By View
$\begin{array}{lllllll}0 & 46 & 134 & 247 & 404 & 607 & 1283\end{array}$
Cyclists

Metro Use Cases

STRAM | METRO

Evaluating investments

\square Advocate for bicycling infrastructure
\square Perform pre-post infrastructure delta analyses
\square Prove that new infrastructure is being adopted by cyclists

Queensland, Australia Department of Transportation

Delta Analysis

Determining Impact of New Infrastructure

September 2015, Brisbane opened a new section of the Enoggera Creek Bikeway, creating the Kelvin Grove Road Underpass

- Create a subset of the region, using a 1 km buffer around the new section
- Calculate the change in number of activities from August to October
- ((October TACTCNT - August TACTCNT) / August TACTCNT) * 100
- Queensland: 19\% increase in activities
■ 1 km buffer: 23% increase in activities

Delta Analysis

Case Study: Queensland, Australia

Metro provides key insights into how the cycling population is adapting to new cycleways, protected lanes and surging car populations. The left image shows the GPS points before (red) and after (blue) a new section of cycleway was opened. The Metro data on the right shows the actual change in percent with blue losing trips and red gaining trips.

Reduce Fatalities - Vision Zero

Goal:

Reduce number of bicycle and pedestrian injuries and fatalities

Use of Metro:

Determine highest bike volume streets

Outcome

Safety enhancements along main corridors, including widening and green pavement markings for bike lanes

Florida DOT

Predictive modeling \&
 Correlation

\square Designing safe routes and intersections
\square Total miles by bike
\square Predictive analyses

Seattle, WA
Department of Transportation

Strava Metro Correlation to Counting Programs

Bike/Ped counters

Pro
Excellent for counting usage at one point
Con
Results then become diluted by a factor of however many choices a rider faces after the counter

Strava Metro Data

Pro
Excellent for showing entire network in real time
Con
Not everyone is a Strava user

Correlating Strava to Counting Programs Cont'

Fremont Bridge Bike Counts

Strava: 25,980
Fremont Counter: 939,386
Percent of Strava to Population: 2.77\%
R2: 0.919 A

Stravai 13,602
Fremont Counter: 266,850
Percent of Strava to Population: 5.10\%
R2: 0.9443

Spokane Bridge S Strava Counts

Using counting programs with the Metro data allows the data to become even more useful. Strava correlation with counting programs is statistically amazing, with r-squared values typically around 0.8 .

Correlating Strava to Counting Programs Cont'

16,297 Strava Bike Trips
X 27 Multiplier
$=440,019$ year bike trips
(199,476 6-9am)

Total Miles Traveled in SDOT by Bike in 2014: 63,253,198 ...how far can we push this?

Strava Metro: Correlation to Counting Programs

Case Study: Seattle, Washington
-Total Miles Ridden: 63,253,198
-Peak Commute Day: May $13^{\text {th }}(38,154$ Strava $)$
-Peak Month: May
-Peak Commute Hour: 7am/8am \& 5pm
-Peak Weekend Hour: 9am/10am

Strava Metro: SDOT Crash Report

Case Study: Seattle, Washington

Combining bike count and collision data with Strava Metro data.

Seattle DOT uses Strava Metro to:

- Understand preferred routes
- Identify problem areas for vehicle/bicycle collisions.
- Model characteristics of dangerous roads
"What we've really focused on is combining our count data with Strava to give us a broader picture of what's happening with cycling across the city. The combination has really proved valuable because it's allowing us to say things about parts of the network we didn't have any data on."
- Craig Moore, SDOT traffic data and records group

Strava Metro Online Community

Strava Metro Online Community

A new website designed to bring together Strava Metro customers from around the globe.

- Collaborative space for transportation planners, traffic modelers, GIS staff, engineers, bike advocacy groups and all others who are using the data in their bike/pedestrian work
- Connect with other customers to learn how others are using the data, ask questions of each other and push the limits of how big data can be used in Smart City planning
- Access the latest user guides, case studies and cookbooks

WELCOME TO THE STRAVA METRO COMMUNITY!

post to oliscussions
recent messages
You dont have any messages.

- stravametro.force.com/community/login

Some of Our Partner Organizations

C OMPASS
COMMUNITY PLANNING ASSOCIATION
f Southwest Idaho

Texas Department of Transportation

AGENCY OF TRANSPORTATION

Mesilla Valley MPO Metropolitan Planning Organization

Seattle Department of Transportation

Contact: Kevin Mabey kmabey@strava.com +1 603-443-1077

STRAK | METRO

