Effectiveness of stormwater management practices in protecting stream channel stability

TESS WYNN THOMPSON, ASSOCIATE PROFESSOR, BIOLOGICAL SYSTEMS ENGINEERING, VIRGINIA TECH

Co-authors, contributors, and funders

David Sample, PhD, PE, Professor and Extension Specialist Biological Systems Engineering **Mohammad Al-Smadi**, PhD, PE, Water Resources Consultant

Sami Towsif Khan, PhD Candidate, Biological Systems Engineering, VT

Mina Shahed Behrouz, Water Resources Designer, Stantec

Andrew Miller, Professor, Geography and Environmental Systems, UMBC

Before we talk research...

In this talk, "sediment" is not a four-lettered word.

- Coarse sediment is naturally transported in suspension and along the channel bed.
- Fine sediment does not play a major role in channel morphology.

Paylingtatk, goednatostatikatemeanagementel isovotrbeamaiyogudeopét paylor fixideings later.

All models are wrong, but some are useful

- George Box, British statistician

Adjust the model to match observed conditions.

Apply common sense.

Ok, let's talk research...

Tributary 109 to Little Seneca Creek served as a case study

- 0.3 mi² drainage area, 44% TIA
- Developed 2006 2016
- USGS stream gage (2004)
- USGS rain gage
- Montgomery County data
 - Cross sections
 - Longitudinal profiles
 - Pebble counts
- Multiple lidar datasets

Stormwater system was designed to meet the 2000 USC requirements:

- 5 ponds
- 26 micro bioretention (MBR)
- 10 infiltration trenches (IT)
- 11 sand filters (SF)
- 18 underground storage facilities (UGS)

"Distributed" stormwater control practices

Channel stability is a two-part problem

Water

SWMM

Storm Water Management Model

Sediment

HEC-RAS 6.3

Results...

Both ponds (storage) and distributed SCMs are needed to minimize hydrologic impacts of development

What does the change in hydrology mean for channel stability?

How can we design stormwater management to protect channel stability?

- Design/retrofit stormwater systems to match post-develop and pre-development sediment transport
 - 1. Erosion potential = 1
 - 2. Duration of critical flow
- Where the receiving stream is already incised, re-create floodplain connection to reduce sediment transport capacity
- Use design storms with durations <24 hours</p>
- Use a watershed-scale model with continuous rainfall data to design SCMs

Some stormwater history

Software with state-specific climate data could be

Projects Parameters Basic Models Advanced Models Reports Utilities Help

