Leveraging Mobility Data for Better Transport Simulation Outcomes

Gaurav Vyas, Product Manager

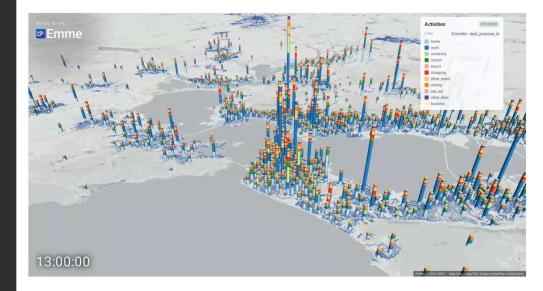
© 2022 Bentley Systems, Incorporated

Planning decision-support increasingly requires activity-based models

 55% "use an ABM or have plans to use one"

What are the barriers to adoption?

• 69% felt "ABMs are difficult to calibrate"


- Survey responses from ~1000 global participants attending Bentley webinar "Advancing travel demand models with AGENT" webinar, February 2022.

Travel behavior changes

- Pandemic
- Work-from-home / telecommuting
- E-shopping
- Car ownership

Model changes

- 4-step
- Hybrid
- Tour-based
- Activity-based (ABM)

Data changes

- HHTS data updates come too late
- Passively collected data available
- Transit ridership/fare card data
- Traffic counts

New technology

- Connected/Autonomous Vehicles
- Electric Vehicles
- MaaS

Bentley

Common Data Sources in Model Development

• Household travel survey (HHTS) data

- Main source of disaggregate estimation
- But large-scale HHTS is expensive and difficult to recruit
- Even 3,000 5,000 households are becoming increasingly problematic

Other data sources include

- Traffic counts
- Transit ridership (APC, e-ticketing / smartcard, on-board survey)
- Primarily only used for model validation and manual calibration

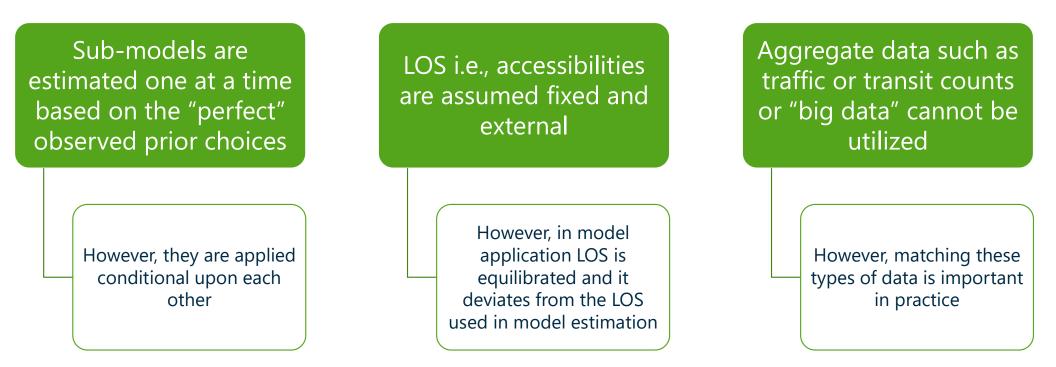
"Big data" as a replacement?

٠

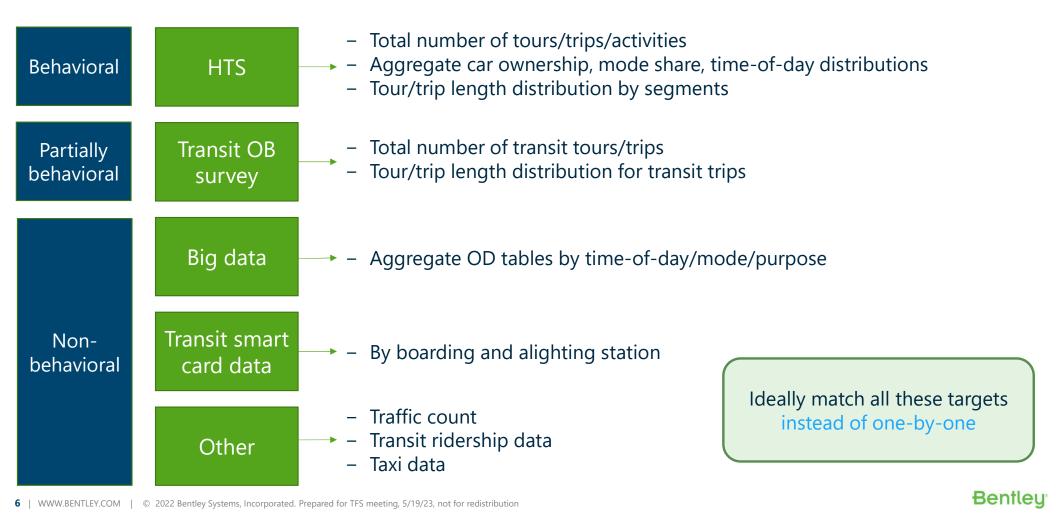
<u>Pros</u>

- Becoming increasingly available from vendors
- "Big data" trip tables can be used to support aggregate 4-step models in practice

<u>Cons</u>

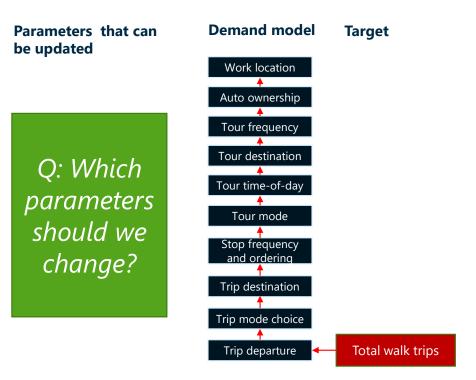

- Not behavioral (no details about trip purposes or individual attributes)
- No person ID to identify individual activity patterns
- Gap between aggregate data structure and disaggregate ABM structure

Reality of transportation industry

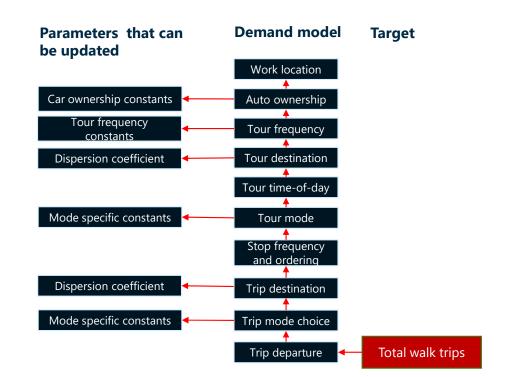

Minimize the need of largescale HTS and take advantage of new types of data

Central question How can big data or traffic counts be effectively used for the simultaneous calibration of travel demand model systems in addition to other data sources?

Known Limitations of conventional estimation



1 of 2 required features - Data Fusion


2 of 2 required features – Calibration Instrumentation

- Calibration expressed as interlinkages between submodels
 - Resulting in many-to-many relationship between targets and sub-models
- Contrary to conventional calibration schema
 - Sub-models are calibrated sequentially one by one with its own targets

2 of 2 required features – Calibration Instrumentation

- Calibration expressed as interlinkages between submodels
 - Resulting in many-to-many relationship between targets and sub-models
- Contrary to conventional calibration schema
 - Sub-models are calibrated sequentially one by one with its own targets

Bentley

Principally different from conventional methods in practice

Trip adjustment and pivoting

Directly adds or removes trips

Pros:

Achieves good validation

Cons:

- Only applicable for short term forecast
- Tend to over-specify (K-factors)
- Only applicable to 4-step models

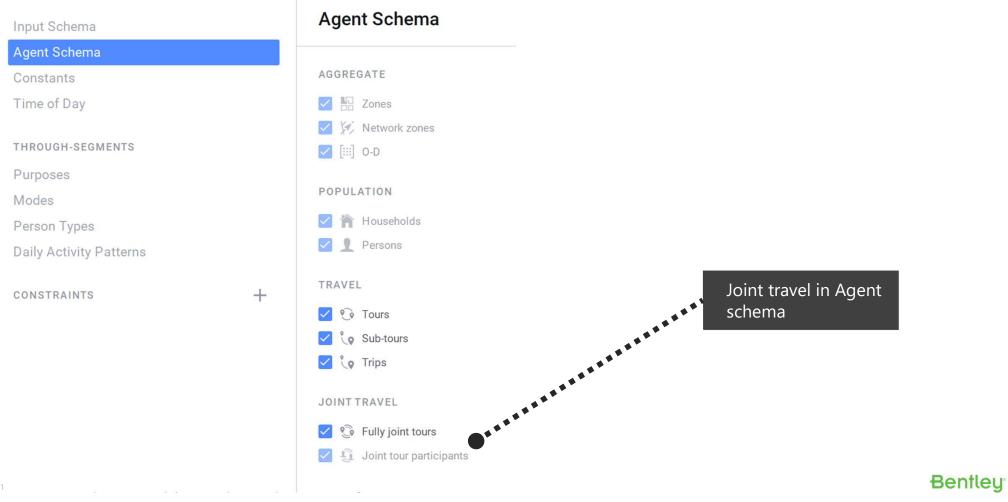
Suggested approach

Adjusts existing model parameters

Pros:


- Can utilize trip adjustment as an intermediate step
- Equally applicable to base and forecast year
- Avoids overspecification
- Fully compatible with both ABM and 4-step models

How is Big-data used for manual calibration in practice so far?


- Pre-processing of O-D level data to create sub-model specific targets:
 - For example: O-D total trips is typically processed to calculate target for tour/trip frequency models
- No systematic approach to identify outliers
- Our approach \rightarrow Use of O-D data directly for model calibration

Automated Calibration Example 1

- MTC 1.5-Style ABM PoC
- Calibrated to "big data" O-D Trip Tables
- Project duration 2 Weeks
- Model data
 - https://github.com/ActivitySim/activitysim_resources/tree/master/mtc_data_full
- O-D Trip Tables data
 - Courtesy 1 TERALYTICS

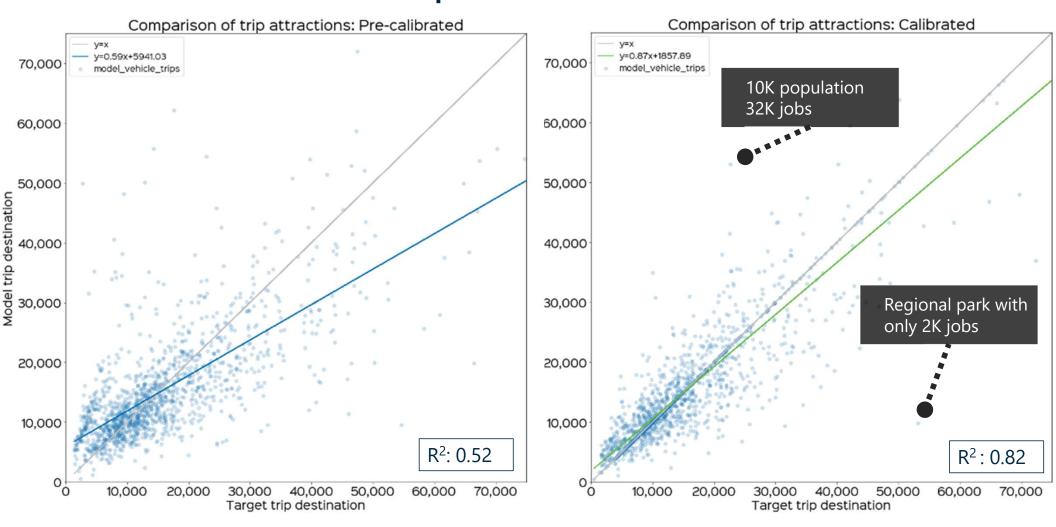
How is the model configured in Agent?

12 | V

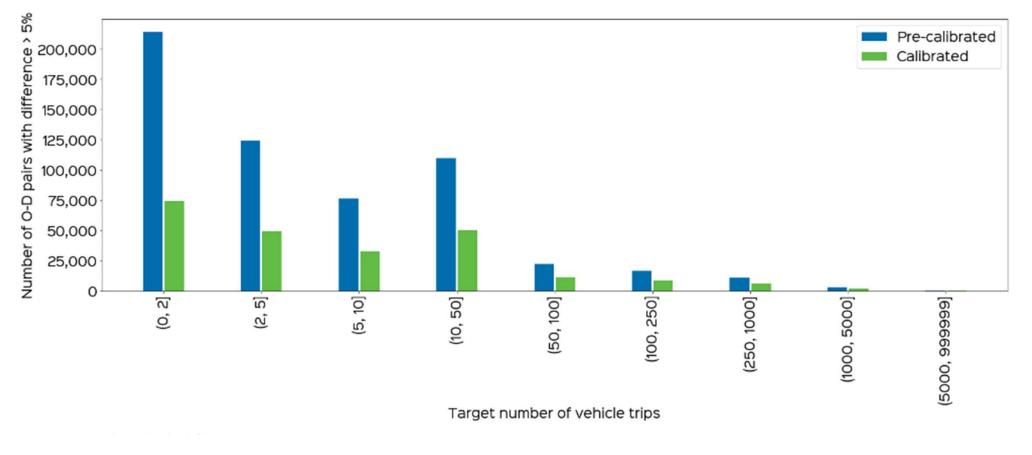
How is the model configured in Agent?

		15 style		•••
		erties		
		odel Steps	51	+
	田	Prep		•••
÷		Calculate dc size terms	5	• • •
	\odot	Compute exponentiated utility	[:::]	•••
		Compute accessibility		•••
	<u>®</u>	School location	1	•••
::	<u>@</u>	Work location	1	
		Add OD relation for home to work		•••
		Calculate person auto savings ratio		•••
		Auto ownership	'n	•••
H		Free parking	1	
	\odot	CDAP	'n	•••
Þ	::	Mandatory tours models		•••
	Ħ	Add primary location to tours		•••
::	0	Mandator tour scheduling	୍ତ	
	0	Joint tour frequency	ĥ	
::	+	Insert joint tours		•••
::		Joint tour composition	Ç	••••

Sequence of model steps

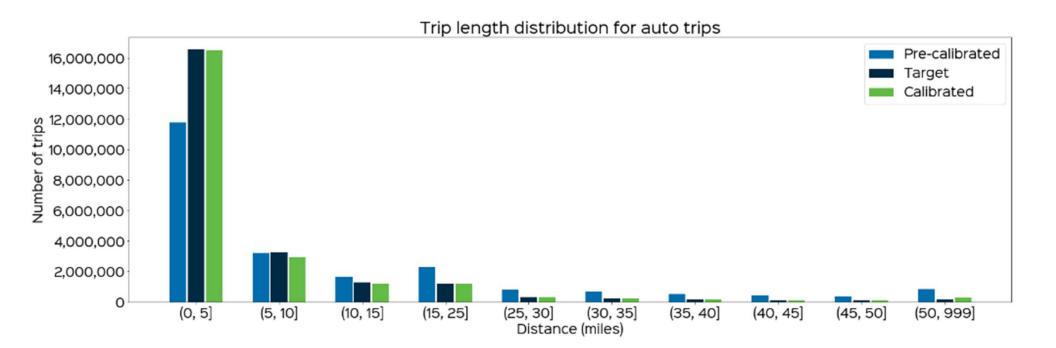

Generalized framework for modelling coordinated choices

CDAP Generic	Decision-maker	Choice set	Statis	tical model	Te	empora	ry attri	ibutes	
Agent Sub-age	nt Combined								
	_		+ +	î T	Ũ	Ш	Ħ	Σ	1
Through-segments	Custom table		T Filter						
Daily Activity Pattern	IS	-		dap_type	_id			label	
Frequency					1 mandate			datory	
		2			2	non	_man	datory	
		3			3			home	


13 | WWW.B

•••• eeting, 5/19/23, not for redistribution

MTC 1.5 calibration: Comparison at zonal level



MTC 1.5 calibration: Comparison at O-D level

Bentley

MTC 1.5 calibration: Impact on trip length distribution

How are the calibration targets configured in Agent?

MTC 15 style calibrated

+ \pm

1

2

3

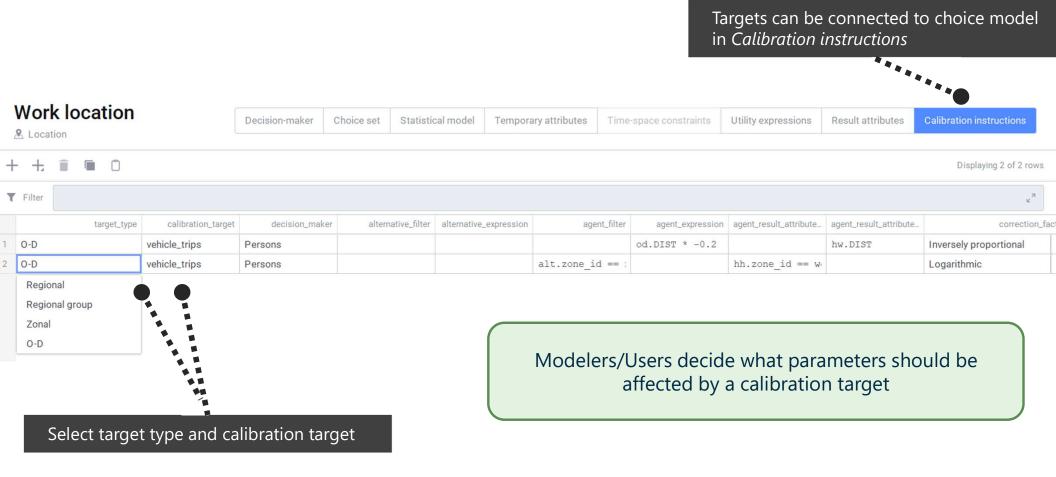
4

5

T Filter

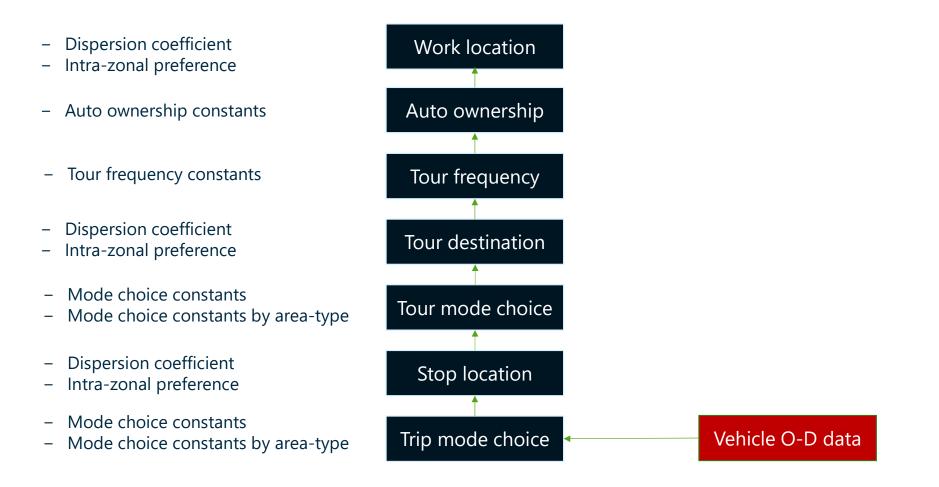
C	15 Sty	le camprateu				Regional target	ts from HTS		Regional
7	Î 🗐 (]							Displa
r									
	Name	Description	Group label (optional)	Table	Filter expression	Value expression	Aggregation function	Target min	Target max
	ft_eat_out	Number of eating out tours f		Persons	ptype == 1	num_eat_out_tours	Mean	0.047884	0.047884
	pt_eat_out	Number of eating out tours f		Persons	ptype == 2	num_eat_out_tours	Mean	0.081915	0.081915
	us_eat_out	Number of eating out tours f		Persons	ptype == 3	num_eat_out_tours	Mean	0.081663	0.081663
	nw_eat_out	Number of eating out tours f		Persons	ptype == 4	num_eat_out_tours	Mean	0.077062	0.077062
	rt_eat_out	Number of eating out tours f		Persons	ptype == 5	num_eat_out_tours	Mean	0.081213	0.081213

Teralytics data added as O-D target Regional Zo


O-D

Zonal

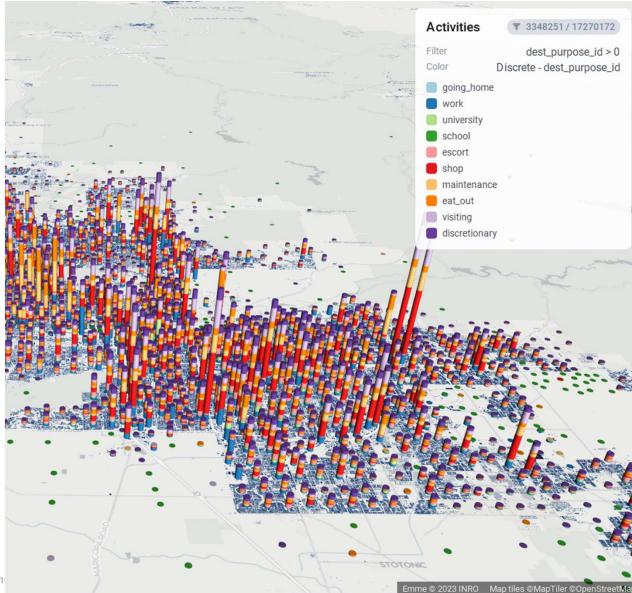
MTC TM 15 style calibrated



What model parameters are affected by Teralytics data?

Bentley

What model parameters are affected by the Teralytics data?


19 | WWW.BENTLEY.COM | © 2022 Bentley Systems, Incorporated. Prepared for TFS meeting, 5/19/23, not for redistribution

Automated Calibration Example 2

- MAG Weekend / Special Event Model
 - Adjustment of weekday model to calibrate to weekend travel behavior
 - No HHTS available for weekend
- "Big data" source
 - AirSage data (OD tables)

20 | WWW.BENTLEY.COM | © 2022 Bentley Systems, Incorporated. Prepared for TFS meeting, 5/1

MAG weekend model: Calibration targets

Weekend ABM with calibration targets

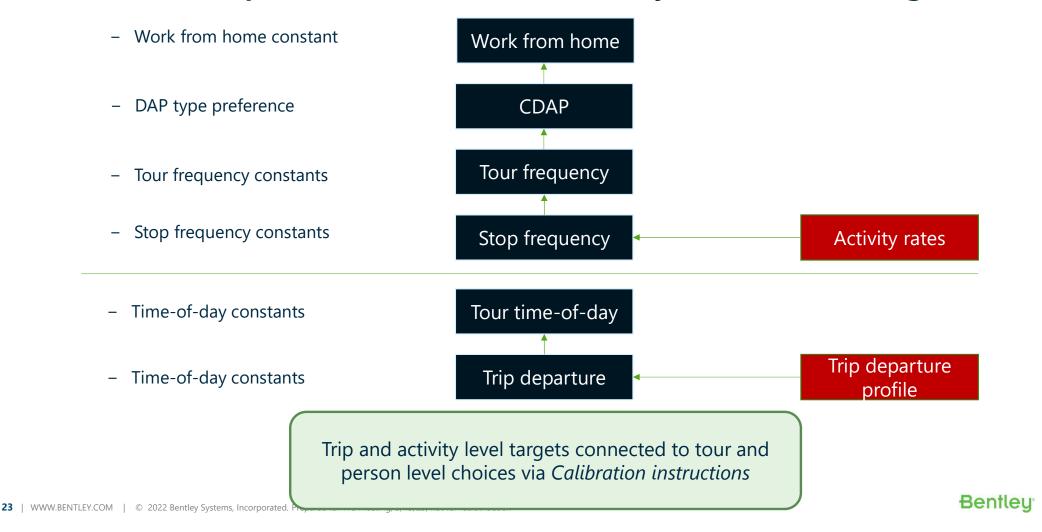
+	+ ■ ■	Û									Dis
T	Filter										
	Na	me Description	Group label (optional)	Tabl	e Filter expression	Value expression	Aggregation function	Target min	Target max	Correction	factor
1	act_w	ork Number activities for Work		Persons		num_work_activities * hh.	Sum	367228.000000	367228.000000	Logarithmic	-
2	act_u	niv Number activities for University		Persons		num_university_activities	Sum	3699.000000	3699.000000	Logarithmic	-
3	act_s	Sch Number activities for School		Persons		num_school_activities * h	Sum	18171.000000	18171.000000	Logarithmic	
4	act_e	esc Number activities for Total es		Persons		num_esc_activities * hh.w	Sum	289676.000000	289676.000000	Logarithmic	-
5	act_ind_sh	Number activities for Shoppin		Persons		num_ind_shop_activities *	Sum	1244604.000000	1244604.000000	Logarithmic	-
6	act_ind_ma	int Number activities for Mainten		Persons		num_ind_maint_activities	Sum	410356.000000	410356.000000	Logarithmic	-
7	act_ind_eat_	out Number activities for Eating o		Persons		num_ind_eat_out_activitie	Sum	1058921.000000	1058921.000000	Logarithmic	-
8	act_ind_v	isit Number activities for Visiting		Persons		num_ind_visit_activities	Sum	450709.000000	450709.000000	Logarithmic	-
9	act_ind_d	isc Number activities for Discreti		Persons		num_ind_disc_activities *	Sum	1968152.000000	1968152.000000	Logarithmic	
10	act_joint_sh	Number activities for Shoppin		Persons		num_joint_shop_activities	Sum	1755184.000000	1755184.000000	Logarithmic	-
11	act_joint_ma	int Number activities for Mainten		Persons		num_joint_maint_activitie	Sum	288989.000000	288989.000000	Logarithmic	-
12	act_joint_eat_	out Number activities for Eating o		Persons		num_joint_eat_out_activit	Sum	1225708.000000	1225708.000000	Logarithmic	
13	act_joint_v	isit Number activities for Visiting		Persons		num_joint_visit_activitie	Sum	280820.000000	280820.000000	Logarithmic	-
14	act_joint_d	isc Number activities for Discreti		Persons		num joint disc activities	Sum	838661.000000	838661.000000	Logarithmic	-
15	act_at_w	ork Number of at work trips		Persons				0	86171.000000	Logarithmic	
				1		activities by purpo sed on literation		kend			

Regional

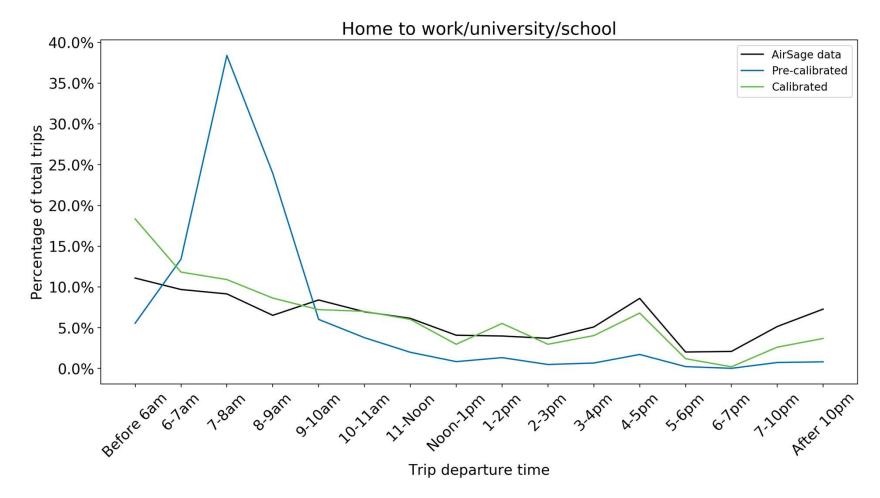
MAG weekend model: Calibration targets

Weekend ABM with calibration targets

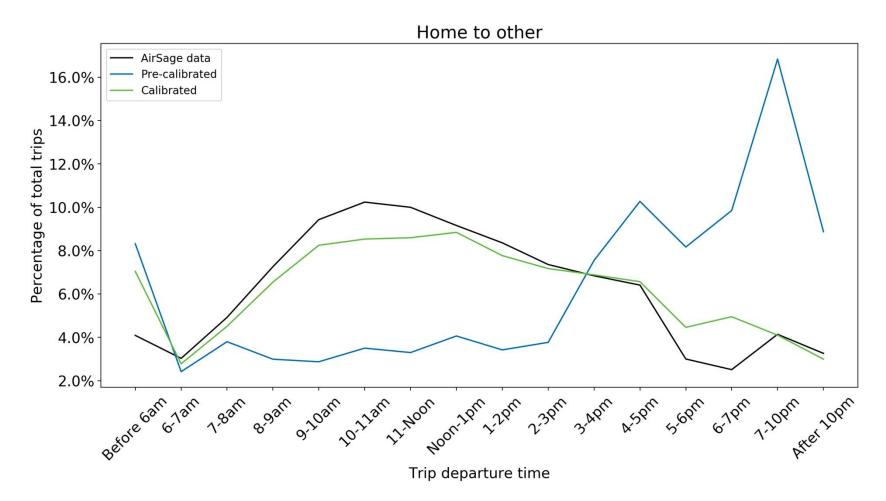
⊢											
r	ilter										
		Name	Description	Group label (optional)	Table	Filter expression	Value expression	Aggregation function	Target min	Target max	Correctio
		hw_am	trip departure for HW trips in AM	trip_tod	Trips	is_hw	departure_time in [1,2,3,	Mean	0.110935	0.110935	Logarithmic
		hw_6_7	trip departure for HW trips in 6-7 p	trip_tod	Trips	is_hw	departure_time in [7,8]	Mean	0.096893	0.096893	Logarithmic
		hw_7_8	trip departure for HW trips in 7-8 p	trip_tod	Trips	is_hw	departure_time in [9,10]	Mean	0.091502	0.091502	Logarithmic


Trip departure profile by purpose from AirSage data

22 | WWW.BENTLEY.COM | © 2022 Bentley Systems, Incorporated. Prepared for TFS meeting, 5/19/23, not for redistribution



gional


What model parameters are affected by calibration targets?

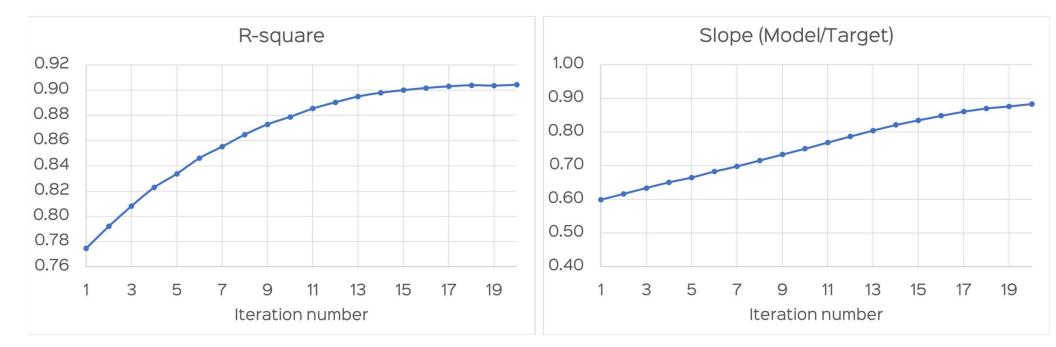
MAG Weekend model: Comparison of trip departure distribution

MAG Weekend model: Comparison of trip departure distribution

Automated Calibration Lima ABM 3

• Lima ABM

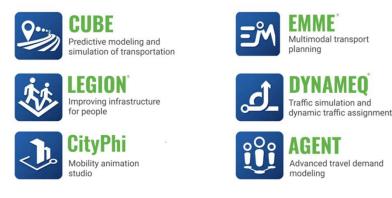
 Calibration to big data and traffic counts Der


井

- "Big data" source
 - StreetLight (OD tables)

emand model with targets		语 100 per with count X		1
	∋+	100 per with count		륙 0
E Prep Assign person types O Aggregate industry codes	 1	START DATE START TIME END TIME DURATION May 17th, 2023 15:23:47 15:28:04 00:04:16:94		View model package from last run
II 💮 Compute work size terms	₩ ···	Model Steps		
E Calculate industry contribution on size te O compute non-mandatory Size term O Work arrangement		Prep Type Type Table-calculator		00:00:00.15
Work location School and university location	1 ··· 1 ···	⊘ Assign person types Type ⊙ Generic Decision-maker ⊥ Persons		00:00:00.20
Add OD relation between home and work Ormmuting frequency model One Auto ownership	1 ···		ean chosen alternative .41001	Sum of chosen alternatives 374,620
II ⊙ CDAP ▶ II ☆ Mandatory travel models	ñ 	Aggregate industry codes Type Generic Decision-maker Persons		00:00:00.15
III Doint travel models On mandatory tour frequency adults On mandatory tour frequency children	 1		lean chosen alternative .59974	Sum of chosen alternatives 268,933
Normandatory tour nequency children Insert non-mandatory tours Xon mandatory tour destination	9 9	Compute work size terms Type Generic Decision-maker Zones		00:00:00.09
III 🖩 Add OD relations to tours		Summary Number of decision-makers 6.497		

Lima ABM calibration: Validation to big data



Conclusions

- New automated calibration features can help agencies to achieve more meaningful transport simulation outcomes by
 - Achieving better model calibrations than previously possible
 - Automating the work required in model calibration to save time and money
 - Integrating rich mobility data sources for more timely updates
 - Opening the door to continuous delivery (CD) for travel modeling programs
 - Makes it easier to transfer demand models from another region (donor models)
 - Calibration tools can also help in identifying outliers/data inconsistencies

Takeaway

- If you are interested in trying this procedure for your own model, 4step or ABM, and data sources, please get in touch!
- AGENT is available now as an Add-on for EMME and CUBE

Mobility Simulation

Thousands of professionals around the world rely on Bentley's mobility simulation software to understand the urban, metropolitan, regional, and national movement of people

Predictive modeling and simulation of transportation

nproving infrastructure

for people

tvP

Mobility animation

Advanced travel demand modeling

30 | WWW.BENTLEY.COM | © 2022 Bentley Systems, Incorporated. Prepared for TFS meeting, 5/19/23, not for redistribution