# A PRIMER ON EPA MOVES MODEL

**Elena Constantine** 

A Presentation to the Travel Forecasting Subcommittee

May 23, 2014



# **MOVES: BASICS**

# > Full Name: <u>MO</u>tor <u>V</u>ehicle <u>E</u>mission <u>S</u>imulator

# > Purpose:

- An EPA-developed model to estimate emissions from mobile sources covering a broad range of pollutants
- It allows analyses to be conducted at multiple dimensions (e.g., spatial, temporal, by vehicle type, by facility type etc.)
- It is based on analysis of millions of emission test results (i.e., MOVES defaults) and considerable advances in EPA's understanding of vehicle emissions



# **MOVES: BASICS (continues)**

- Mobile emissions depend on a broad range of variables such as:
  - Travel variables (e.g., VMT, VHT)
  - Size and characteristics of existing and future year regional vehicle fleets (e.g., vehicle type, age and population, etc.)
  - Mode of operation (e.g., speed distributions, operations on controlled/uncontrolled access facilities, ramps, idling etc.)
  - Meteorological factors (e.g., temperatures & humidity percentages)
  - Existing and future technologies (e.g., hybrid/electric vehicles, improved fuel efficiency vehicles, fuel formulation and supply, etc.)
  - Regulatory Framework (i.e., Tier 2 and 3 standards, Inspection & Maintenance Programs, other state programs, etc.)



# THE EVOLUTION OF MOVES

| Milestones           | Dates                                                                                                     | Significance                                                                                                                     |  |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| MOVES2010<br>Release | December<br>2009                                                                                          | Next generation emissions model from MOBILE6.2                                                                                   |  |  |  |  |  |
| Tier II              | New standards for light duty vehicles that will reduce GHG emissions and improve fuel economy (MY2012-16) |                                                                                                                                  |  |  |  |  |  |
|                      | August 2010                                                                                               | Incorporates new LDV and LDT GHG emissions standards (MY2012-16)                                                                 |  |  |  |  |  |
| MOVES2010a           |                                                                                                           | Updates effects of corporate fleet average fuel economy in future years                                                          |  |  |  |  |  |
| Release              |                                                                                                           | Incorporates small reductions in refueling and sulfur-related emissions due to reduced fuel consumption                          |  |  |  |  |  |
|                      | June 2012                                                                                                 | About 10% faster for runs at county level                                                                                        |  |  |  |  |  |
|                      |                                                                                                           | Added debugging features                                                                                                         |  |  |  |  |  |
| MOVES2010b           |                                                                                                           | Improvements in error recovery, making network operations more efficient                                                         |  |  |  |  |  |
| Release              |                                                                                                           | More detailed outputs                                                                                                            |  |  |  |  |  |
|                      |                                                                                                           | Air toxics emissions calculations improved                                                                                       |  |  |  |  |  |
|                      |                                                                                                           | Newer versions of Java (v.1.7.0) and MySQL (v.5.5.12)                                                                            |  |  |  |  |  |
| Tier III             | April 2014                                                                                                | New emissions standards for light duty vehicles and some heavy-duty vehicles; lower sulfur content of gasoline beginning in 2017 |  |  |  |  |  |



### **KEY APPLICATIONS of MOVES at TPB**

# > Air Quality Conformity:

- Ozone Pollutant (VOC and NO<sub>x</sub>)
- Fine Particles (Direct PM<sub>2.5</sub> and Precursor NO<sub>X</sub>)
- Carbon Monoxide (CO)

# Greenhouse Gas (GHG) Emissions (measured in tons/year):

- Atmospheric CO<sub>2</sub>
- Methane (CH<sub>4</sub>)
- Nitrous Oxide (N<sub>2</sub>O)

### State Implementation Plans (SIPs)

### Project Level Analysis (Hot Spot and NEPA) by Consultants



# STRATEGY TESTING USING MOVES

- Emissions reductions from the Telework TERM of the Commuter Connection Program
- Emissions reductions from Car Free Day
- Emission reductions from the Metropolitan Area Transportation Operations Coordination (MATOC) Program
- Emissions reductions from regional pedestrian facilities expansions and enhancements
- Scenario Testing (e.g., land use & smart growth, toll lanes, BRT networks, etc.)



# **MOVES: MODELING OPTIONS**

# > Execution:

- Inventory Mode (currently used for conformity and SIPs)
- Emission Rate Mode

# > Analysis Areas:

- Geographic Boundaries: Nation, State, County or City
- Custom Domain

# > Time Dimension:

Year, Month, Week, Day of week or Hour of day

# Output Summary:

- Spreadsheet-based
- MySQL Script



#### **MOVES: MODELING PROCESS**

#### Input data categories



| MOVES Default   |
|-----------------|
| Regional Data   |
| State-wide Data |
| TDM             |
| VIN Data        |



## **MOVES: SOURCES OF INPUTS**

|    | Data Category                 | MOVES Name                | Origin | Data Source                                                                                |  |
|----|-------------------------------|---------------------------|--------|--------------------------------------------------------------------------------------------|--|
| 1  | Age Distribution              | sourceTypeAgeDistribution | County | VIN Databases                                                                              |  |
| 2  | Average Speed<br>Distribution | avgSpeedDistribution      | County | TDM Post-Processor<br>Fairfax Co. (school buses & refuse trucks )<br>WMATA (transit buses) |  |
| 3  | Road Type Distribution        | roadTypeDistribution      | County | TDM post-processor                                                                         |  |
| 4  | Source Type Population        | sourceTypeYear            | County | VIN Databases & jurisdictional growth rates                                                |  |
| 5  |                               | HPMSVTypeYear             | County | TDM Post-Processor                                                                         |  |
|    |                               | monthVMTFraction          | Region | Regional Data                                                                              |  |
|    | Vehicle Type VMT              | dayVMTFraction            | Region | Regional Data                                                                              |  |
|    |                               | hourVMTFraction           | Region | Regional Data                                                                              |  |
| 6  | Ramp Fraction                 | roadType                  | Region | MOVES Default                                                                              |  |
| 7  |                               | FuelSupply                | State  | MD-DC-VA Air Agencies                                                                      |  |
| 8  | Fuel                          | FuelFormulation           | State  | MD-DC-VA Air Agencies                                                                      |  |
| 9  | I/M Programs                  | IMCoverage                | State  | MD-DC-VA Air Agencies                                                                      |  |
| 10 | Meteorology Data              | zoneMonthHour             | State  | Local Airport Monitors                                                                     |  |



### MOVES: MODELING PROCESS VMT Allocations by Road Type



| MOVES Default |  |  |  |  |  |  |  |
|---------------|--|--|--|--|--|--|--|
| Regional Data |  |  |  |  |  |  |  |
| TDM           |  |  |  |  |  |  |  |



#### **MOVES START UP SCREEN**

<u>File Edit Pre Processing Action Post Processing Tools Settings Help</u>





#### **MOVES POLLUTANT MENU SCREEN**

#### File Edit Pre Processing Action Post Processing Tools Settings Help

|                    |        |                       |   |                                        | Running Exhaust | Start Exhaust | Brakewear | Tirewear | Evap Permeation | Evap Euel Vapor Venting | Evap Euel Leaks | Crankcase Running Exhaust |
|--------------------|--------|-----------------------|---|----------------------------------------|-----------------|---------------|-----------|----------|-----------------|-------------------------|-----------------|---------------------------|
|                    |        | Description           |   | Total Gaseous Hydrocarbons             | V               | V             | Drakonoa  |          | V               |                         | V               |                           |
|                    | ×.     |                       |   | Non-Methane Hydrocarbons               | ×               | ~             |           |          | ×               |                         | V               |                           |
|                    | _      | Scalo                 |   | Non-Methane Organic Gases              | V               | V             |           |          | ×               |                         | V               |                           |
|                    | V.     | Scale                 |   | Total Organic Gases                    | L L             | L L           |           |          | ×               |                         | ×               |                           |
|                    |        |                       |   | Volatile Organic Compounds             | ×               | V             |           |          | ×               |                         | V               |                           |
|                    | $\sim$ | Time Spans            |   | Carbon Monoxide (CO)                   |                 |               |           |          |                 |                         |                 |                           |
|                    | ×.     |                       |   | Oxides of Nitrogen (NOx)               | ×               |               |           |          |                 |                         |                 |                           |
|                    | 1      | Coographic Doundo     |   | Ammonia (NH3)                          | ×               | V             |           |          |                 |                         |                 |                           |
|                    | V.     | deographic bounds     |   | Nitrogen Oxide (NO)                    |                 | -<br>-        |           |          |                 |                         |                 |                           |
|                    |        |                       |   | Nitrogen Dioxide (NO2)                 | ×               |               |           |          |                 |                         |                 |                           |
| +                  | $\sim$ | Vehicles/Equipment    |   | Sulfur Dioxide (SO2)                   | L L             |               |           |          |                 |                         |                 |                           |
|                    | ×.     |                       |   | Primary Exhaust PM10 - Total           | L L             | L L           |           |          |                 |                         |                 |                           |
|                    | 1      | Road Type             |   | Primary PM10 - Organic Carbon          | V               | V             |           |          |                 |                         |                 |                           |
|                    | V.,    | Nodu Type             |   | Primary PM10 - Elemental Carbon        | <b>v</b>        | <b>v</b>      |           |          |                 |                         |                 |                           |
|                    |        |                       |   | Primary PM10 - Sulfate Particulate     | <b>V</b>        | V             |           |          |                 |                         |                 |                           |
|                    | N/     | Pollutants And Proces |   | Primary PM10 - Brakewear Particulate   |                 |               | V         |          |                 |                         |                 |                           |
|                    |        |                       |   | Primary PM10 - Tirewear Particulate    |                 |               |           | V        |                 |                         |                 |                           |
|                    | 1      | Manage Input Data Ser |   | Primary Exhaust PM2.5 - Total          | V               | ~             |           |          |                 |                         |                 | 2                         |
|                    | ×.     | manage input bata se  |   | Primary PM2.5 - Organic Carbon         | ¥               | ~             |           |          |                 |                         |                 | v                         |
|                    |        | 4                     |   | Primary PM2.5 - Elemental Carbon       | ¥               | ~             |           |          |                 |                         |                 | v                         |
| <u>+</u>           | V      | Strategies            | 1 | Primary PM2.5 - Sulfate Particulate    | v               | ~             |           |          |                 |                         |                 | v                         |
|                    | ÷.,    |                       | 1 | Primary PM2.5 - Brakewear Particulate  |                 |               | ~         |          |                 |                         |                 |                           |
| $\left[ + \right]$ | 1      | Output                | 1 | Primary PM2.5 - Tirewear Particulate   |                 |               |           | ~        |                 |                         |                 |                           |
|                    | ×.     |                       | 1 | Total Energy Consumption               | ~               | 2             |           |          |                 |                         |                 |                           |
|                    | 4      |                       | 1 | Petroleum Energy Consumption           | <b>v</b>        | ~             |           |          |                 |                         |                 |                           |
|                    | V      | Advanced Performance  | 1 | Fossil Fuel Energy Consumption         | ~               | <b>v</b>      |           |          |                 |                         |                 |                           |
|                    |        |                       | 1 | Brake Specific Fuel Consumption (BSFC) | <b>v</b>        |               |           |          |                 |                         |                 |                           |
|                    |        |                       | 1 | Methane (CH4)                          | <b>v</b>        | ~             |           |          |                 |                         |                 | 2                         |
|                    |        |                       | 1 | Nitrous Oxide (N2O)                    | <b>v</b>        | ~             |           |          |                 |                         |                 | 2                         |
|                    |        |                       | 1 | Atmospheric CO2                        | ~               | ~             |           |          |                 |                         |                 |                           |
|                    |        |                       |   | CO2 Equivalent                         | <b>V</b>        | ~             |           |          |                 |                         |                 |                           |
|                    |        |                       |   | Benzene                                | <b>v</b>        | ~             |           |          | ~               | ~                       | ~               | 2                         |
|                    |        |                       |   | Ethanol                                | ~               | r             |           |          | ~               | ~                       | ~               | <b>v</b>                  |
|                    |        |                       | 2 | MTBE                                   | ×               | r             |           |          | ×               | <b>V</b>                | ~               | <b>v</b>                  |
|                    |        |                       | 1 | Naphthalene                            | <b>v</b>        | ~             |           |          | <b>v</b>        | <b>V</b>                | V               | <u> </u>                  |
|                    |        |                       | 1 | 1,3-Butadiene                          | <b>v</b>        | ~             |           |          |                 |                         |                 | <u> </u>                  |
|                    |        |                       | 1 | Formaldehyde                           | <b>v</b>        | ~             |           |          |                 |                         |                 | <b>~</b>                  |
|                    |        |                       |   | Acetaldehyde                           | <b>V</b>        | ~             |           |          |                 |                         |                 |                           |
|                    |        |                       |   | Acrolein                               | V               | V             |           |          |                 |                         |                 | ~                         |



# **Questions?**

