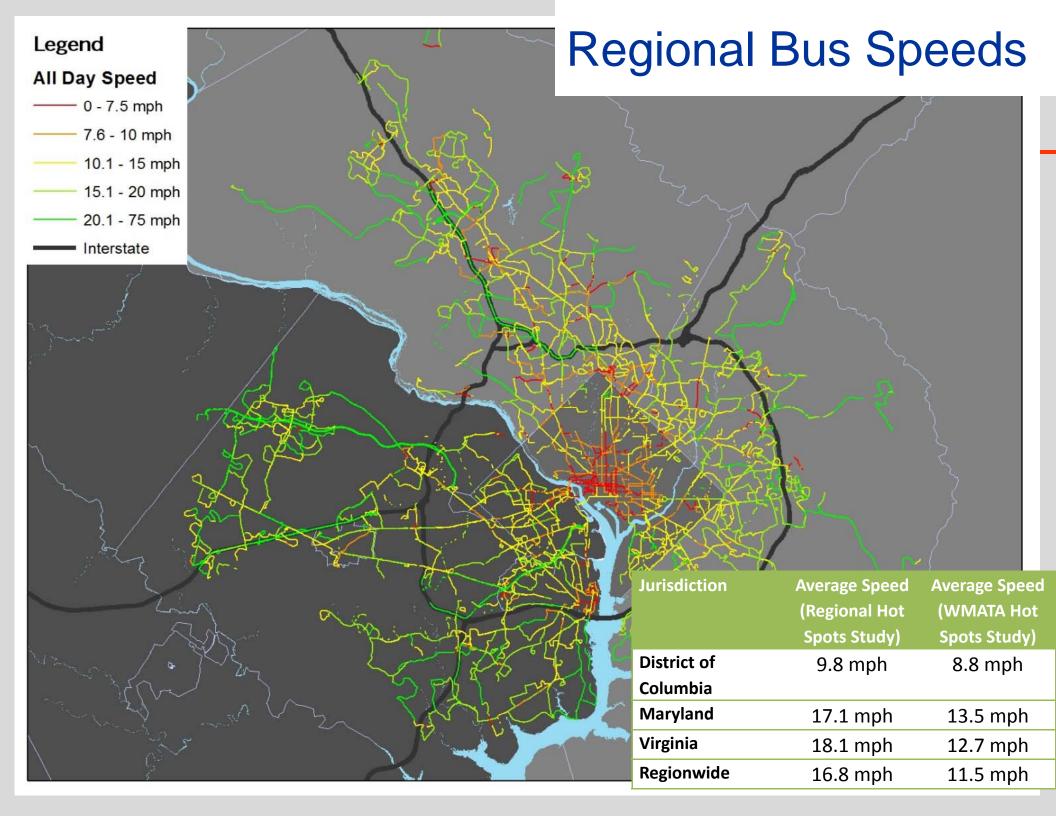

Multimodal Coordination for Bus Priority Hotspots

Presentation to TPB MOITS July 10, 2012

Eric Randall & Andy Meese

Study goals – develop a prioritized list of Top 10 Hot Spots, provide input on implementation of bus priority treatments, and scope possible costs, savings, and impacts.



Task 2 – Develop "Top 15" Lists / Initial Hotspot Database

- Top 15 sites initially identified in each jurisdiction: three lists
 - AM peak delay, PM peak delay, All-day delay

Process:

- Utilized existing bus speed data from and other agencies for locations without WMATA data
 - Input into NavTeq data layers on a road segment basis
- 2. Used number of bus trips for all agencies to weight roadway segments
- 3. Developed Hot Spots list based on scores
 - Segment Score = (15mph speed) x Number of Buses in time period

Task 3 – Field Verification Process

- Initial desktop inventory and traffic assessment
 - Turning movements
 - Intersection level of service
 - Lane configuration
 - Bus stop locations
 - Bus routings
- Data collection worksheet
 - Sidewalks, curb ramps, and crosswalks
 - Traffic and pedestrian signals
 - Bike lanes
 - Parking restrictions
 - Roadway width
 - Posted speed limits
- Identified critical peak period for hot spot site evaluation

LOCATION: VIERS MILL RD-REEDIE RD-AMHERST AVE

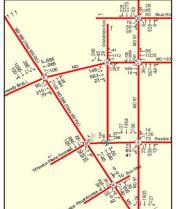
PB (PHONE) SWA (PHONE)

Barr (857-205-8054)
in Laverty (202-213-6)

CHECKLIS

Complete field worksheet

Complete at least 2 runs in each direction with Go Pro Camera


Go Pro Instructions:

- 1. Use the suction cup to FIRMLY attach the Go Pro Camera to the roof of your car
- 2. Press and hold the button on the FRONT of the camera to power the device ON.
- 3. Press the shutter button on the TOP of the camera to begin recording
- 4. MAKE SURE THE RED LIGHT IS FLASHING, OTHERWISE THE CAMERA IS NOT RECORDING!
- When finished recording, press the shutter button on TOP to stop recording
- 6. Turn the device off by pressing the power button on the FRONT.
- 7. Download video and name file 07PM1_Viers

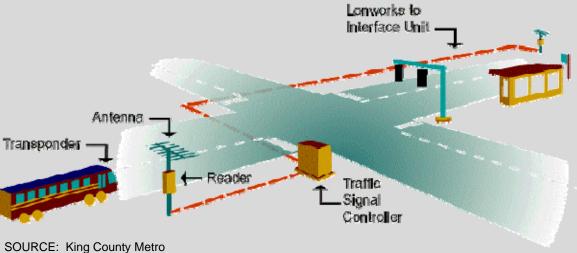
ADDITIONAL DATA

-Viers Mill Rd-Reedie Rd-Amherst Ave Limits: Georgia Ave to MD 193

-Ranked 12 AM, 8 PM and 4 All Day

Identify Bus Priority Treatments

Corridor/Segment-Level


- **Exclusive Lanes**
- Signal priority system application (TSP)
- **Passive Signal Coordination**
- **Stop Consolidation**

Intersection-Level

- Isolated TSP
- Queue-jump signal
- Bypass Lane
- **Curb Extension**
- Stop Relocation

SOURCE: TCRP Report 118 (5)

Task 4 – Concept Plan Development

- Concept Layouts with infrastructure improvements
 - Six locations (two each: DC, MD, VA)
 - Minimal or no ROW impact
 - 15% level of design
 - Use of scaled aerial photography
- Capital Cost Estimates
 - Limited number of quantities
 - Prior approval of unit costs
 - Could translate to FTA SCC format

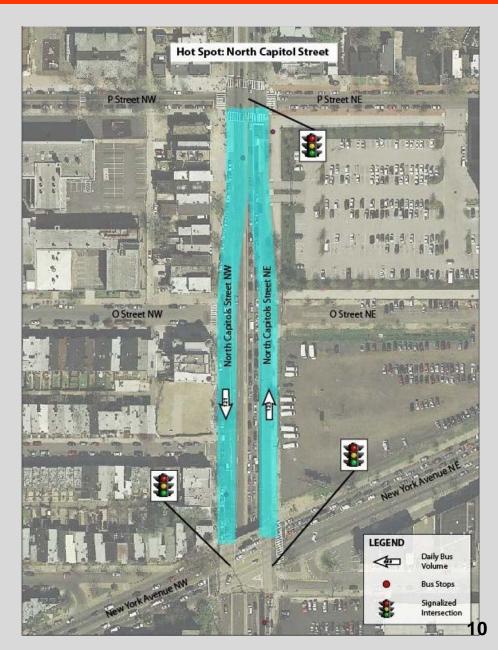
Example: Field Verification Summary - DC

Street(s)	Rankings		Potential for Improvements				
	Daily	AM	PM	Physical	Transit	Signal	Long- Term
Virginia Ave. NW	1	2					
Wisconsin Ave. NW	9			X	X		
7 th St. NW/SW	10	14	3			X	
Connecticut Ave.	11		2				
14 th St. NW	13	10	8	X	X		
Thomas Circle & 14th St. NW	15		9				
New York Ave./N. Capitol St.				X		X	
13 th St. NW		4	5	X			
Georgia Ave. NW		9		X		X	
16 th St. NW		12			X		

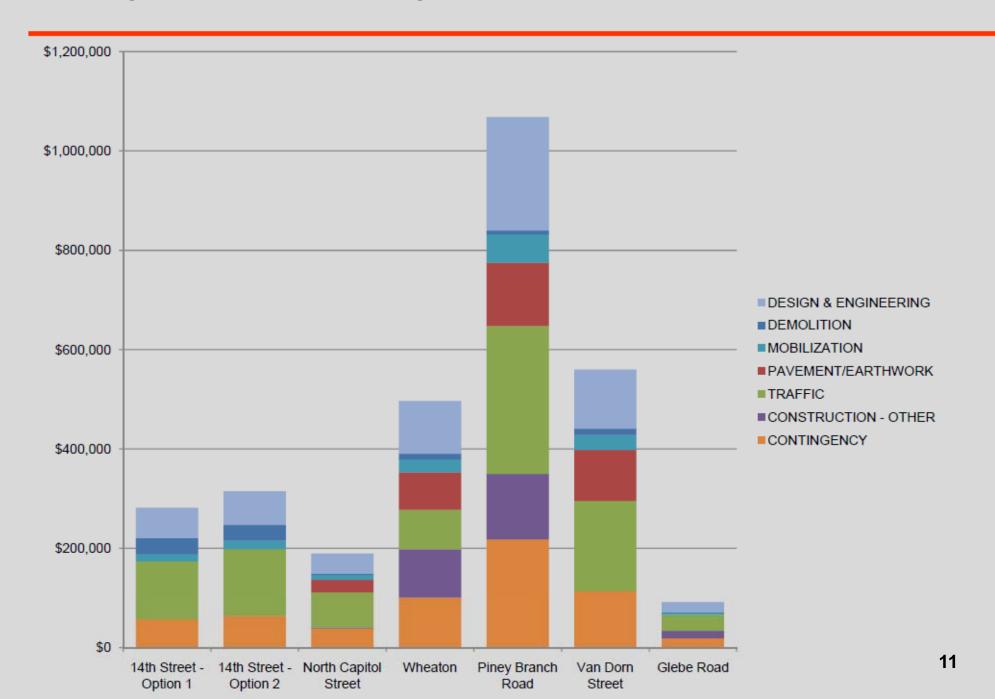
x =Some potential for improvements

X = Strong potential for improvements

= Recommended for concept design


Example Design: DC #2 – N. Capitol St.

- Problems Observed
 - Six-lane undivided section heavily congested
 - AM queues spill back to 4th St past Florida Ave.
 - Significant bus congestion on N. Capitol St. service roads
 - Very busy stops
 - Buses in SB service lane significantly delayed by 5 - 8 minutes (max delay 11 minutes).



Example Design: DC #2 – N. Capitol St.

- Potential physical improvements
 - Bus lanes along N.
 Capitol St. service roads
- Potential signal timing improvements
 - Review signal timing at
 New York Ave./N. Capitol
 St. to reduce SB queuing
 - Deploy point control traffic officer to reduce intersection blockage

Comparison of Capital Costs

Task 4 – Impact Assessment

- Transit Operations
 - Unit travel time savings
 - On-time performance
 - Estimated bus operating cost savings 5 & 20 years
 - MWCOG PCN Study and TCRP Synthesis 83
- Traffic Operations
 - Intersection LOS
 - Arterial Speeds
 - Queues
- Before and after impact summary

Example: DC #2 – N. Capitol St.

Traffic Impacts

Queues and delays for vehicles and buses along New York
 Ave and North Capitol Street are related to downstream congestion

NY/N. Capitol SB RAMP	HCM Avg. Control Delay	HCM V/C Ratio	HCM LOS	Approach LOS
Existing AM	9	0.61	А	D
Queue Jump & Bus Lane Conversion AM	11.6	0.67	В	D
Split Adjustment AM	8.9	0.61	Α	D
Existing PM	14.2	0.75	В	D
Queue Jump & Bus Lane Conversion PM	16.9	0.87	В	D
Split Adjustment PM	61.3	0.8	E	D

NY/N. Capitol NB RAMP	HCM Avg. Control Delay (Sec.)	HCM V/C Ratio	HCM LOS
Existing AM	9.7	0.61	Α
Queue Jump & Bus Lane Conversion AM	12	0.66	В
Split Adjustment AM	9.6	0.61	А
Existing PM	14.3	0.83	В
Queue Jump & Bus Lane Conversion PM	9.3	0.82	Α
Split Adjustment PM	65.7	0.89	Е

Preliminary Operating Cost Savings

- Highly conservative estimate
- Time savings of individual improvements applied to bus volumes & multiplied by WMATA FY13 nonregional service platform hour cost
 - Bus lane time savings calculated from TCRP Report 118
 - Queue-jump & TSP time savings derived from Synchro outputs
- Based on 7 weekday peak hours only
 - o 6-9 AM; 3-7 PM
 - "Shoulders" of peak discounted at 80% of time savings

Example: MD #2 - Piney Branch Road

Preliminary Bus Ops Impacts

 For some locations, able to estimate potential operating benefits and resulting cost savings

	Annual Time Savings (pl hr)	Annual cost savings	5-year cost savings (discounted)	20-year cost savings (discounted)
Queue- Jumps	173.0	\$19,058	\$89,743	\$289,817
TSP	466.3	\$51,378	\$241,933	\$781,301
Total	639.2	\$70,436	\$331,676	\$1,071,118

 However, the Synchro model only works for medium-scale priority treatments, not single locations. More costly microsimulation would be needed to assess single locations.

Multimodal Coordination and Bus Hot Spots Study– Conclusions / Final Steps

- Overall, specific bus priority improvements are fairly modest.
 - Minimal or no impact on general traffic LOS
 - Capital costs are sizable: ~\$100K per intersection
 - However, costs are reduced if integrated with other work, such as re-paving, signal upgrades, etc.
 - Benefits are also modest; indeterminate for single locations
- Noteworthy that many Hot Spots locations already under study (i.e., corridor studies) or have planned improvements (e.g., Glebe Rd).
- Final deliverables received from consulting team. Final comments received from regional participants.
 - TPB Staff will conduct final review and distribute final Task
 4 report end of July.

Multimodal Coordination and Bus Hot Spots Study – Further Application

- The findings of this study offer both:
 - For some locations, an independent assessment of potential improvements and the associated costs and impacts.
 - More broadly, the study provides a general process for assessing bus hot spots and their potential costs and impacts that can be used for future efforts.
- Task #2 developed a list of "Top 15" Hot Spots for DC, MD, and VA (AM, PM, and all-day)
 - Prioritized locations provide an opportunity for further analysis of potential bus priority treatments by jurisdictions.

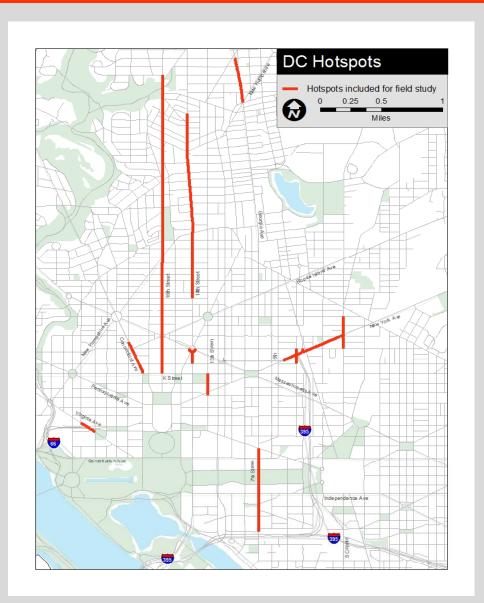
Extra Slides

Study Objectives

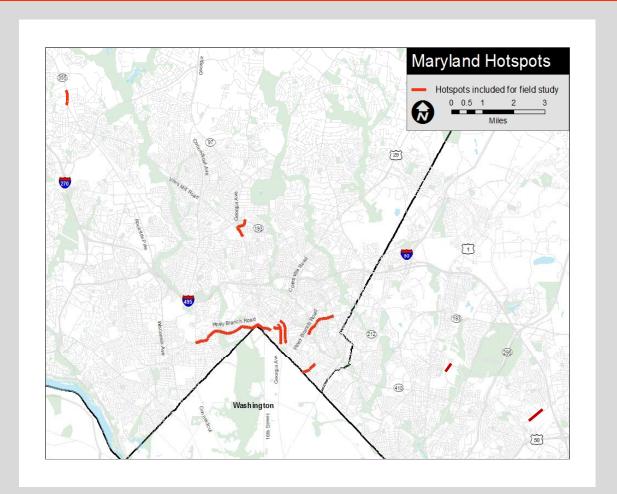
- Identify opportunities for roadway improvements that could increase average bus speed and on-time performance.
 - Builds on previous Priority Corridor Network (PCN) study,
 with its 20 year vision for surface transit enhancements.
- "Hot Spots" are specific intersections or segments in which modest investments in bus priority improvements could improve bus operations and reduce operating subsidies.
 - Builds on previous WMATA work for the Metrobus network, by including regional transit information.
- Study goal is to develop a prioritized list of Top 10 Hot Spots, providing input on implementation of bus priority treatments, and scoping possible costs, savings, and impacts.

Study Participants

- Coordination TPB
- Technical Advisor WMATA Office of Long-Range Planning
- Data and Observations Regional Transit Providers
- Direction & Feedback Regional Stakeholders
- Data Analysis, Field Verification, Reports Consultant Team
 - Parsons Brinckerhoff Prime, Hot Spots Verification, Design Concepts
 - Foursquare ITP Database Development, Hot Spots List
 - Sabra, Wang & Associates Traffic Analysis


Regional Bus Systems

- Core Agencies
 - Metrobus
 - Ride On
 - Fairfax Connector
 - DASH
 - DC Circulator
 - ART
 - CUE
 - The BUS
- Commuter Bus
 - MTA Commuter Bus
 - Omni-Ride
 - LC Transit
- Non Core Agencies
 - TransIT
 - Connect-a-Ride


Top 10 DC Hotspots

- Virginia Ave. NW E St. to D St.
- Georgia Ave. NW Upshur St. to New Hampshire Ave.
- Wisconsin Ave. NW & Q St.
- 7th St. NW/SW I-395 to Pennsylvania Ave.
- Connecticut Ave. K St. to Jefferson Pl.
- 14th St. NW Corcoran to Otis Sts.
- Thomas Circle (southern half) &14th St. NW (to L St.)
- New York Ave./N. Capitol St.
- 13th St. NW H St. to K St.
- 16th St. NW K St. to Shepherd St.


Top 10 Maryland Hotspots

- Georgia Ave. 13th St. to Colesville Rd.
- River Rd. at Paint Branch Dr.
- Veirs Mill Rd./Reedie Dr./Amherst Ave.
- Fenton St. MD 410 to Colesville Rd.
- East-West Hwy. Georgia
 Ave. to Connecticut Ave.
- Piney Branch Rd. MD 193 to Sligo Ave.
- Carroll Ave. Maple St. to Ethan Allen Rd.
- Hungerford Dr. Washington St. to Ivy League Ln.
- Annapolis Rd. Finns Ln to Riverdale Rd.
- Wayne Ave. Georgia Ave. to Colesville Rd.

Top 10 Virginia Hotspots

- Wilson Blvd. Ft. Myer Dr. to Moore St.
- Lynn St. Key Bridge to 19th St.
- Joyce St. Columbia Pike to Army-Navy Dr.
- Gallows Rd. Belleforest Dr. to Inova Hospital
- Army Navy Dr. Eads St. to Joyce St.
- Van Dorn St. Eisenhower Ave. to Franconia Rd.
- SB Glebe at Arlington Blvd.
- Patriot Dr. Lafayette Forest Dr. to Heritage Dr.
- Eisenhower Ave. Van Dorn St. to Van Dorn Metrorail station
- Route 123 Jermantown Rd. to Folin Ave.

