ALEXANDRIA TRANSIT COMPANY

ZERO EMISSIONS
ELECTRIC BUS PROGRAM

DASH OVERVIEW

- Local Bus System for the City of Alexandria, VA
- Services City of Alexandria and surrounding areas
- Operates over 3 million miles annually
- Roughly 4 million annual passengers
- Fleet of 115 fixed route buses
- Service area of 15 square miles

FLEET STRATEGY – ROADMAP TO ZERO EMISSIONS

2010: Policy adopted to purchase Diesel-Electric Hybrids for new fleet

2017: Policy change to purchase Clean Diesel instead of Hybrid for short term new fleet.

2019 – 2027: Progressive transition to purchase more Zero Emissions and less Clean Diesel buses with each bus procurement

2027: All new bus procurement to be 100% zero emissions only

2037: 100% of the fleet to be converted to Zero Emissions

FEASIBILITY STUDY FINDINGS

- Battery Electric is most feasible technology to achieve Zero Emissions given DASH's facilities, fleet, and service requirements
- At about 60-70% conversion, 1:1 replacement using depot charger will no longer be feasible

BLOCK COVERAGE CHALLENGES

Option	Advantages	Disadvantages
Add buses	Consistency of bus & charging technology, scheduling flexibility	Costs associated with a larger fleet*
On-route charging	Allows longer range away from depot, spread electricity demand across the day/locations	Up front cost, permitting, location restrictions, may still require adding buses*
Fuel cell buses	Range allows for 1:1 replacement of older buses	Cost is high, requires H2 fueling infrastructure

BATTERY CHARACTERISTICS

BROCHURE RANGE =/= USABLE RANGE

7

APPROACH AND ACTIVITIES

- Strategic Discussions with Local Committees and Organizations
 - Environmental Policy Commission
 - Board of Directors
 - City Council
 - Transportation Commission
- Visiting Manufacturers
 - New Flyer (Aniston, AL & St. Cloud, MN)
 - Proterra (Greenville, SC & San Francisco, CA)
- ZEB Conferences

- Revenue Service Demo's
 - New Flyer
 - Proterra
 - ENC (Fuel Cell)
- Collect Demo Data
- Visit Peers (i.e. DC Circulator)
- Attend webinars and information sessions whenever possible

FACTORS AFFECTING RANGE

• Route characteristics: speed, stops, grade

Ridership

• Weather – Climate

• Heating and cooling. (Heat is no longer "free.")

Battery degradation

• Operator Driving Behavior

CURRENT DEPLOYMENT BUSES

<u>Proterra</u>

- (7) 40' ZX5, 440kWh
- Requirement for interoperability with ABB Chargers

New Flyer of America

- (3) 40' XE40, 466kWh
- (4) 60' XE60, 524 kWh
- Requirement for interoperability with Proterra Chargers

CURRENT DEPLOYMENT -CHARGERS

- <u>ABB</u>
- (3) 150 KW Chargers
- 6 Dispensers Total
- Sequential Charging
- Proterra (Rhombus)
- (3) 125 KW Chargers
- 6 Dispensers Total
- Sequential Charging

DEPLOYMENT GOALS

- Divide risk
- Motivate manufacturers for performance
- Evaluate differing approaches and engineering
- Demonstrate standardization and interoperability

SUCCESSES & CHALLENGES

SUCCESSES

- Early buses showing more reliable than diesel counterparts
- In good weather/operating conditions, range has been adequate
- Drivers and Passengers happy with vehicles
- Initial observations (Maintenance cost per Mile)

• Electric: \$.33-.47/mi

• Diesel: \$1.00-1.20/mi

CHALLENGES

- Early adopter challenges: quality, range expectations, build process.
- Heating significantly reduces range.
- Despite standards, interoperability between buses and chargers continue to be an issue.
- Timeframes:
 - Bus build: 9 20 months
 - Revenue service: 2-3 months after delivery
 - Chargers can take even longer

NEXT STEPS

- ZEB Implementation Study Phase II
- Pre-design of DASH Facility Expansion / Electric Bus Charging Yard
- Charge Management
- Smart Charging
- Assisted Dispatch
- On-Route Opportunity Charging
- Inductive Charging

FACILITY PROGRAM

FACILITY PROGRAM

DESIGN & ENGINEERING

- Initial Scale-Up of up to 6 MW of power
- Expandable to up to 12 MW of power
- Different Charging Configurations Considered
 - 20+ 150 KW Standard Chargers (2:1 Ratio)
 - Up to 20 450 KW Fast Chargers (2:1 Ratio)
 - Lesser amounts of 1.5 MW Megachargers (up to 10:1 Ratio)

- Need to support ultimately 130+ Buses using no more than 12 MW of power
- Need to support 24/7 Service Profile
- Less chargers at faster output?
- More chargers at slower output?
- How much on-route charge opportunity?

CHARGING STRATEGIES

RAYMOND.MUI@ALEXANDRIAVA.GOV

DASHBUS.COM

ALEXANDRIA TRANSIT COMPANY

ZERO EMISSION BUS PROGRAM

