Bus Priority Treatment Guidelines

Briefing for NCRTPB MOITS Policy Task Force and Technical Subcommittee February 8, 2011

Mike Lambert, AICP – Director, Mid-Atlantic Transit and Rail mlambert@vhb.com

Rich Roisman, AICP – Senior Transportation Planner rroisman@vhb.com

Vanasse Hangen Brustlin, Inc.

Today's Briefing

- Study Background
- · Study Objectives / Scope of Work
- · Guidelines Objective
- Guidelines Summary
- Lessons Learned
- Next Steps
- Discussion

Acknowledgements

- Study team: VHB, Foursquare ITP, National Bus Rapid Transit Institute
- COG/TPB Staff: Eric Randall, Jerry Miller
- WMATA: Sean Kennedy, Michael Eichler
- Technical Advisory Committee
 - Transportation staff from TPB regional agencies
- Contributing state and local traffic engineers

Study Background (1)

- 2008: WMATA approved plan for 24 regional priority bus corridors
- Concept known as Priority Corridor Network (PCN)

Study Background (2)

- 2009: TPB and WMATA conduct regional, corridor-level PCN evaluation
 - Corridors would attract more riders
 - Increase access to jobs
 - Improve corridor travel times
 - Potential operational cost savings
- Further analysis recommended at corridor, segment, intersection level

Study Background (3)

- 2010: TPB receives \$58M in TIGER funding
 - 15 of 24 PCN corridors received preliminary funding approval
- Funding in place
- TPB member agencies needed implementation guidance for priority bus
- "Development of Implementation Guidelines for Priority Bus Transit on Arterials in the Washington Region"

Study Objectives

- Develop a set of bus priority implementation guidelines as a common reference for the region
 - In support of WMATA PCN, TIGER, and other bus priority and/or BRT implementations
- Collect and disseminate information on feasible bus priority strategies
 - Document regional and national bus priority strategies
- Foster coordination between transit operators and roadway owners / traffic agencies
 - Review draft guidelines with jurisdictional transit and traffic agency staff to get information and input

Scope of Work / Tasks

- Establish Technical Advisory Committee
- 2. Document bus priority strategies in the Washington region and other areas throughout the US
- Develop Draft Implementation Guidelines
- Meet with Transit and Traffic Agency Staff
- 5. Prepare Final Report

Guidelines Objective

- Provide information about bus priority treatments that can be applied to improve bus operations
 - Intersection of transit system and road network agencies

Information conveyed in:

- Descriptions
- Drawings
- Examples

Target audiences:

- 1. Traffic engineers
- 2. Public officials
- 3. Public
- Question and answer (Q&A) format used throughout the guidelines

Guidebook Summary / Organization

- Priority Bus Treatments Overview
- Street Segments
 - Running Way
 - Bus Stops
- Intersections
 - Transit Signal Priority (TSP)
 - Queue Jumps and Crosswalks
- Sidewalks
 - Sidewalk Design and Bus Shelters
 - Local Examples of Priority Bus Treatments

Street Segments: Running Way

- On Street Exclusive Bus Lane
 - Lane Location
 - Lane Operations
 - Lane Vehicle Restrictions
 - Lane Dimensions & Markings
- Mixed Traffic Bus Lane

Street Segments: Bus Stops

- Stop Location
 - Near-side
 - Mid-block
 - Far-side
- Bus Bays
- Bus Bulbs

Image sources (clockwise from L): TCRP #19 (1996) fairfaxcounty.gov streetsblog.org 12

Sidewalks and Shelters

- Sidewalks
 - Width
 - Length
 - Height
- Shelters

mage sources (clockwise from bottom L): Seattle DOT, NRBTI (group of four), NRBTI (2009)

13

Intersections: Queue Jumps and Crosswalks

- Queue jumps integrated with bus stop placement and TSP
- Typically at intersections with LOS D or worse
- Minimum of a striped crosswalk for every intersection with a bus stop
- Bus bulbs can reduce crossing distance / time
 - Include cut-throughs for cyclists

Intersections: TSP (1)

- TSP modifies signal timing to give an advantage to transit vehicles
 - Green extension or advance green
 - Conditional or unconditional
 - Active or passive
- TSP can improve the person throughput of an intersection
 - Bus passengers vs. car passengers
 - Person throughput included in HCM 2010
- Minimum green phase retained for adequate pedestrian crossing time

15

Intersections: TSP (2)

- TSP should be considered in corridors that have bus delays resulting from heavy congestion
 - LOS D/E, V/C between 0.8 and 1.0
- TSP can be applied for both exclusive and mixed-traffic bus lanes
 - Integrate with queue jumps for mixed-traffic
- Signal priority ≠ signal preemption
 - Preemption typically for emergency vehicles (first responders), some LRT applications

Comparison of TSP Technologies

Lane Detection

	EXCLUSIVE		MIXED
	LANE		TRAFFIC
•	Induction	•	RF tag
	loop detector	•	Optical
•	Video		emitter
	detector	•	GPS/AVL
•	GPS/AVL	•	Infrared
•	Optical		
	emitter		
•	Radar		
	detector		
	DE tog		

TSP Communication

TECHNOLOGY	ADVANTAGES	DISADVANTAGES
INDUCTIVE LOOPS	Devices placed in guideway rather than vehicle	Only appropriate for exclusive bus ways Devices damaged in road construction
LOW FREQUENCY RF (100-150 KHz)	Transmitters inexpensive and are easily removed or replaced	Message transmitted may be hindered by accumulated dirt or snow on tag
900-1000 MHz RF	Transmitters inexpensive and are easily removed or replaced Can transmit much information	Message transmitted may be hindered by accumulated dirt or snow on tag
SPREAD SPECTRUM RADIO	Can transmit much information	Not as a ccurate in locating buses as othe radio frequency technologies Can be affected by weather May be more expensive
INFRARED	Well proven in Europe	Limited ability to provide precise vehide information Limited am ount can be transmitted from vehicle Requires line of sight
VIDEO		Requires line of sight
OPTICAL	Cost savings if already in place for emergency vehicle preemption	Limited ability to provide precise vehide information and transmit from vehicle Requires line of sight
GPS/AVL VEHICLE TRACKING		Buildings may block signal May not provide predise location information for signal priority treatment

Sources (clockwise from L): ITS America (2004), TCRP #90 (2003), PVTA

Lessons Learned

- Signal preemption vs. signal priority
- TSP consideration in congested (but not severely congested) corridors
- Combination of priority bus treatments often most effective
- Priority bus treatments favorable for "complete streets"
- · Education, education, education
- ITS aspect of priority bus treatments
 crucial to success (TSP, AVL, etc.)

Next Steps

- Webinar / briefing on guidelines for other regional stakeholder groups
 - TPB Technical Committee
- More regional examples / priority bus projects

19

Thank you for your time

Questions / Discussion?

