Bus Priority Treatment Guidelines Webinar Regional Bus Subcommittee of the TPB June 28, 2011 Mike Lambert, AICP Director, Mid-Atlantic Transit and Rail mlambert@vhb.com ## Today's Briefing - □ Study Background - Study Objectives / Scope of Work - GuidelinesObjective - GuidelinesSummary - Lessons Learned - Next Steps - Discussion - □ COG/TPB Staff: Eric Randall, Jerry Miller - □ WMATA: Sean Kennedy, Michael Eichler - ☐ Technical Advisory Committee - Transportation staff from TPB regional agencies - Contributing state and local traffic engineers - ☐ Study team: VHB, Foursquare ITP, National Bus Rapid Transit Institute - 2009 TPB and WMATA regional, corridor-level PCN evaluation conclusions: - Corridors would attract more riders - Increase access to jobs - Improve corridor travel times - Potential operational cost savings # Why Develop Guidelines? - Bridge between planning and application - Provide traffic engineers with a toolkit of possible applications - Provide an overview of - Suitability - Criteria - Impacts and Benefits - ☐ Further analysis is recommended at the corridor, segment and intersection levels ### ☐ Provide a common regional reference - Support WMATA PCN, TIGER, and other bus priority and/or BRT projects - Collect and disseminate information on feasible bus priority strategies - Learn from local experience - Meet with regional roadway owners and traffic agencies - Foster coordination between transit and traffic stakeholders ## Content Guidelines ### **ORGANIZATION** - Priority Bus TreatmentsOverview - □ Street Segments - Running Way - Bus Stops - □ Intersections - Transit Signal Priority (TSP) - Queue Jumps and Crosswalks - □ Sidewalks - Sidewalk Design and Bus Shelters ### **PRESENTATION** - Question and Answer Format - Descriptions - Drawings - □ Local Examples - Citations ### Local Examples Reviewed ### □ Richmond Highway Express (REX) - Metrobus #79 Georgia Avenue - Metrobus #37Wisconsin AvenueExpress - Metrobus 28X Bailey's Crossroads-Tysons Corner - Metrobus S9 SilverSpring McPhersonSquare Line # ransit Concepts from ### TRANSIT PLANNING CONSIDERATIONS ### TRAFFIC ENGINEERING CONSIDERATIONS | | Vehicles | |--|----------| | | | | | | | | | - □ Headway □ Frequency - □ Stop Frequency □ Stop Location - □ Exclusive Lane □ Restricted Lane - □ Transit Signal Priority □ Signal System Timing - ☐ Shelter ☐ Sidewalk Capacity - □ Fare Collection □ Pedestrian Circulation - ☐ Schedule Reliability ☐ Congestion - □ Crosswalk Location □ Crosswalk Design ## Described Strategies - ☐ Transit Signal Priority - Queue Jumps - Bus Bulbs - Stop LocationAlternatives - Shelter Design - Crosswalk Design - □ Reserved Lane Options - Sidewalk Design ### Priority Signal **Transit** - ☐ TSP modifies signal timing to give an advantage to transit vehicles - Green extension or advance green - Conditional or unconditional - Active or passive - ☐ TSP can improve the person throughput of an intersection - Bus passengers vs. car passengers - Person throughput included in HCM 2010 - Minimum green phase retained for adequate pedestrian crossing time - ☐ TSP should be considered where bus delays are due to heavy congestion - LOS D/E with V/C between 0.8 and 1.0 - ☐ TSP can be applied for both exclusive and mixed-traffic bus lanes - Integrate with queue jumps for mixedtraffic - □ Signal priority <u>not</u> signal preemption - Signal preemption is for emergency vehicles (first responders) - Signal priority for priority buses ### Many types of TSP give an advantage to transit vehicles - Green extension or advance green - Conditional or unconditional - Active or passive - TSP can improve the person throughput of an intersection - Bus passengers vs. car passengers - Person throughput included in HCM 2010 - Minimum green phase retained for adequate pedestrian crossing time ### Comparison of TSP Technologies ### Lane Detection | EXCLUSIVE | | MIXED | | |-----------|---------------|---------|----------| | LANE | | TRAFFIC | | | • | Induction | • | RF tag | | | loop detector | • | Optical | | • | Video | | emitter | | | detector | • | GPS/AVL | | • | GPS/AVL | • | Infrared | | • | Optical | | | | | emitter | | | | • | Radar | | | | | detector | | | | • | RF tag | | | ### **TSP Communication** | TECHNOLOGY | ADVANTAGES | DISADVANTAGES | |-----------------------------------|---|--| | INDUCTIVE LOOPS | Devices placed in guideway rather than vehicle | Only appropriate for exclusive buswaysDevices damaged in road construction | | LOW FREQUENCY RF
(100-150 KHz) | Transmitters in expensive and are easily
removed or replaced | Message transmitted may be hindered accumulated dirt or snow on tag | | 900-1000 MHz RF | Transmitters in expensive and are easily
removed or replaced Can transmit much information | Message transmitted may be hindered accumulated dirt or snow on tag | | SPREAD SPECTRUM RADIO | Can transmit much information | Not as accurate in locating buses as oth radio frequency technologies Can be affected by weather May be more expensive | | INFRARED | Well proven in Europe | Limited ability to provide precise vehicle Limited amount can be transmitted from vehicle Requires line of sight | | VIDEO | | Requires line of sight | | OPTICAL | Cost savings if a lready in place for
emergency vehicle preemption | Limited ability to provide precise vehicle information and transmit from vehicle Requires line of sight | | GPS/AVL VEHICLE
TRACKING | | Buildings may block signal May not provide precise location information for signal priority treatmen | - Use at intersections with LOS D or worse - Integrated with stop locations and TSP - Call for a striped crosswalk for every intersection with a bus stop - Bus bulbs can reduce crossing distance / time - Include cut-throughs for cyclists Far Side Stop Queue Jump Near Side Stop Queue Jump ### WMATA Bus Bulb Design ## sus Bulbs - Provide space for shelters without reducing sidewalk width - Allow buses to remain in moving lane - □ Require 2 to 3 curb lane parking spaces **New York Select Bus** ## Bus Bulbs New York City Select Bus, New York City | TYPE OF STOP | ADVANTAGES | DISADVANTAGES | |----------------------|---|---| | CURB-SIDE | Provides easy access for bus driver and results in minimal delay to bus Is simple in design and easy and inexpensive for a transit agency to install Is easy to relocate | Can cause traffic to queue behind stopped bus, thus causing traffic congestion May cause drivers to make unsafe maneuvers when changing lanes in order to avoid stopped traffic | | BUSBAY | Allows patrons to board and alight out of travel lane Provides a protected area away from moving vehicles for both the stopped bus and bus patrons Minimizes delay to through traffic | May present problems to bus drivers when attempting to re-enter traffic, especially during periods of high roadway volumes Is expensive to install compared with curb-side stops Is difficult and expensive to relocate May disrupt the urban fabric in central city areas | | OPEN BUS BAY | Allows the bus to decelerate as it moves
through the intersection See Bus Bay advantages | May cause delays to right-turning vehicles when a bus is at the start of the right turn lane See Bus Bay disadvantages | | QUEUE JUMPER BUS BAY | Allows buses to bypass queues at a signal See Open Bus Bay advantages | May cause delays to right-turning vehicles when a bus is at the start of the right turn lane See Bus Bay disadvantages | | BUS BULB | Removes fewer parking spaces for the bus stop Decreases the walking distance (and time) for pedestrians crossing the street Provides additional sidewalk area for bus patrons to wait Results in minimal delay for bus Accentuates the streetscape, providing space for shelters, plantings, and street furniture | Costs more to install compared with curb-side stops See Curb-side disadvantages Depending on site conditions, may result in permanent loss of parking | Source: Transit Cooperative Research Program Report 19: Guidelines for the Location and Design of Bus Stops ## Factors Stop Location ### Midblock stops are generally least desirable □ Far or near side stops depend on bus and traffic operations and space availability ## Shelter Design ## Toute this inclinate as yet? REMY MARTIN **WMATA** South Miami Busway Lymmo – Orlando Select Bus, New York | Curb/Outside or Parking Lane | |------------------------------| | Middle Lane | | Center Lane | | | | Median | | Median Center Lane | | 111001011 | | Center Lane | Curb Lane Reservation (New York, NY) Peak Hour Bus Lane (Kansas City Kansas) Middle Lane Reservation (Cleveland, Ohio) Median Lane Reservation | OUTSIDE | Lowest cost of installation Typically occupies less
street space Lower capital costs
associated with bus stops Easier/Safer Pedestrian
Access | Conflicts with on-street deliveries and other curb access needs Conflicts with right turns Conflicts with bicycle travel Lower transit travel times savings Requires removal of on-street parking Does not provide strong image to priority service Can be difficult to enforce | Restricted lane use; may permit HOVs, must accommodate turning vehicles, often restricted to peak periods only | |---------|--|---|--| | MIDDLE | Allows for on-street parking Removes conflicts with illegally parked vehicles Allow bus to avoid delays from turning vehicles | Conflicts with cars parking May require bus to pull out of traffic or construction of a bus bulb in order to access passengers Strict enforcement needed | Restricted lane use with
HOV, turning vehicles, and
peak-period only while
allowing on-street parking | | CENTER | Moves bus operations away from the curb and sidewalk | Conflicts with left turns May require medians or islands with ample space to accommodate passengers waiting May require buses with driver-side doors for passenger boarding | Restricted lane use; may
permit HOVs, must
accommodate turning
vehicles, often restricted
to peak periods only | | MEDIAN | Clearly separates the bus stop from sidewalk activity Provides a strong sense of identity to the priority bus Enables contra-flow bus operation Best option for future conversion to streetcars / LRT | Pedestrian access more challenging Requires the most space and greatest street width Safety considerations involving wayward vehicles Conflicts with left turns Restricts flexibility of bus operation in using general traffic lanes or entering and exiting bus lane | 24/7 dedicated bus-only
with physical separation | ### □ Crossing Considerations - Safe crosswalks are needed at every bus shelter - Signage and Markings - Minimize Crossing Distance - Used medians as safe havens - Pedestrian Signals are preferred Val de Marne, France Chicago, Illinois # Crosswalk Principles - Visibility - Safety - Minimize Crosswalk **Distance** - Signage - Vehicle Speeds - Exclusive Pedestrian Phase where necessary ## Sidewalk Design - □ All transit trips require walking on at least one end of the trip - Sidewalk design factors - Connectivity - Sidewalk width - Clearances around obstructions - ADA compliance ### Mid-Block Layout Considerations **End Block Layout Considerations** - Organizing and expressing priority bus concepts from the perspective of the traffic engineer aids communications - There is broad acceptance of the value of examining capacity in terms of persons and not just vehicles - Establishing a common vocabulary will assist in advancing priority bus objectives ### □TIGER Grants - ☐ Hot Spots Analysis - **□WMATA TSP Initiative**