Bus Priority Treatment Guidelines

Webinar

Regional Bus
Subcommittee of the TPB

June 28, 2011

Mike Lambert, AICP

Director, Mid-Atlantic Transit and Rail
mlambert@vhb.com

Today's Briefing

- □ Study Background
- Study Objectives / Scope of Work
- GuidelinesObjective
- GuidelinesSummary
- Lessons Learned
- Next Steps
- Discussion

- □ COG/TPB Staff: Eric Randall, Jerry Miller
- □ WMATA: Sean Kennedy, Michael Eichler
- ☐ Technical Advisory Committee
 - Transportation staff from TPB regional agencies
- Contributing state and local traffic engineers
- ☐ Study team: VHB, Foursquare ITP, National Bus Rapid Transit Institute

- 2009 TPB and WMATA regional, corridor-level PCN evaluation conclusions:
 - Corridors would attract more riders
 - Increase access to jobs
 - Improve corridor travel times
 - Potential operational cost savings

Why Develop Guidelines?

- Bridge between planning and application
- Provide traffic engineers with a toolkit of possible applications
- Provide an overview of
 - Suitability
 - Criteria
 - Impacts and Benefits
- ☐ Further analysis is recommended at the corridor, segment and intersection levels

☐ Provide a common regional reference

- Support WMATA PCN, TIGER, and other bus priority and/or BRT projects
- Collect and disseminate information on feasible bus priority strategies
- Learn from local experience
- Meet with regional roadway owners and traffic agencies
- Foster coordination between transit and traffic stakeholders

Content Guidelines

ORGANIZATION

- Priority Bus TreatmentsOverview
- □ Street Segments
 - Running Way
 - Bus Stops
- □ Intersections
 - Transit Signal Priority (TSP)
 - Queue Jumps and Crosswalks
- □ Sidewalks
 - Sidewalk Design and Bus Shelters

PRESENTATION

- Question and Answer Format
- Descriptions
- Drawings
- □ Local Examples
- Citations

Local Examples Reviewed

□ Richmond Highway Express (REX)

- Metrobus #79 Georgia Avenue
- Metrobus #37Wisconsin AvenueExpress
- Metrobus 28X Bailey's Crossroads-Tysons Corner
- Metrobus S9 SilverSpring McPhersonSquare Line

ransit Concepts from

TRANSIT PLANNING CONSIDERATIONS

TRAFFIC ENGINEERING CONSIDERATIONS

	Vehicles

- □ Headway
 □ Frequency
- □ Stop Frequency
 □ Stop Location
- □ Exclusive Lane
 □ Restricted Lane
- □ Transit Signal Priority
 □ Signal System Timing
- ☐ Shelter ☐ Sidewalk Capacity
- □ Fare Collection
 □ Pedestrian Circulation
- ☐ Schedule Reliability ☐ Congestion
- □ Crosswalk Location □ Crosswalk Design

Described Strategies

- ☐ Transit Signal Priority
- Queue Jumps
- Bus Bulbs
- Stop LocationAlternatives
- Shelter Design
- Crosswalk Design
- □ Reserved Lane Options
- Sidewalk Design

Priority Signal **Transit**

- ☐ TSP modifies signal timing to give an advantage to transit vehicles
 - Green extension or advance green
 - Conditional or unconditional
 - Active or passive
- ☐ TSP can improve the person throughput of an intersection
 - Bus passengers vs. car passengers
 - Person throughput included in HCM 2010
- Minimum green phase retained for adequate pedestrian crossing time

- ☐ TSP should be considered where bus delays are due to heavy congestion
 - LOS D/E with V/C between 0.8 and 1.0
- ☐ TSP can be applied for both exclusive and mixed-traffic bus lanes
 - Integrate with queue jumps for mixedtraffic
- □ Signal priority <u>not</u> signal preemption
 - Signal preemption is for emergency vehicles (first responders)
 - Signal priority for priority buses

Many types of TSP give an advantage to transit vehicles

- Green extension or advance green
- Conditional or unconditional
- Active or passive
- TSP can improve the person throughput of an intersection
 - Bus passengers vs. car passengers
 - Person throughput included in HCM 2010
- Minimum green phase retained for adequate pedestrian crossing time

Comparison of TSP Technologies

Lane Detection

EXCLUSIVE		MIXED	
LANE		TRAFFIC	
•	Induction	•	RF tag
	loop detector	•	Optical
•	Video		emitter
	detector	•	GPS/AVL
•	GPS/AVL	•	Infrared
•	Optical		
	emitter		
•	Radar		
	detector		
•	RF tag		

TSP Communication

TECHNOLOGY	ADVANTAGES	DISADVANTAGES
INDUCTIVE LOOPS	Devices placed in guideway rather than vehicle	Only appropriate for exclusive buswaysDevices damaged in road construction
LOW FREQUENCY RF (100-150 KHz)	Transmitters in expensive and are easily removed or replaced	Message transmitted may be hindered accumulated dirt or snow on tag
900-1000 MHz RF	 Transmitters in expensive and are easily removed or replaced Can transmit much information 	Message transmitted may be hindered accumulated dirt or snow on tag
SPREAD SPECTRUM RADIO	Can transmit much information	 Not as accurate in locating buses as oth radio frequency technologies Can be affected by weather May be more expensive
INFRARED	Well proven in Europe	 Limited ability to provide precise vehicle Limited amount can be transmitted from vehicle Requires line of sight
VIDEO		Requires line of sight
OPTICAL	Cost savings if a lready in place for emergency vehicle preemption	 Limited ability to provide precise vehicle information and transmit from vehicle Requires line of sight
GPS/AVL VEHICLE TRACKING		 Buildings may block signal May not provide precise location information for signal priority treatmen

- Use at intersections with LOS D or worse
- Integrated with stop locations and TSP
- Call for a striped crosswalk for every intersection with a bus stop
- Bus bulbs can reduce crossing distance / time
 - Include cut-throughs for cyclists

Far Side Stop Queue Jump

Near Side Stop Queue Jump

WMATA Bus Bulb Design

sus Bulbs

- Provide space for shelters without reducing sidewalk width
- Allow buses to remain in moving lane
- □ Require 2 to 3 curb lane parking spaces

New York Select Bus

Bus Bulbs

New York City

Select Bus, New York City

TYPE OF STOP	ADVANTAGES	DISADVANTAGES
CURB-SIDE	 Provides easy access for bus driver and results in minimal delay to bus Is simple in design and easy and inexpensive for a transit agency to install Is easy to relocate 	 Can cause traffic to queue behind stopped bus, thus causing traffic congestion May cause drivers to make unsafe maneuvers when changing lanes in order to avoid stopped traffic
BUSBAY	 Allows patrons to board and alight out of travel lane Provides a protected area away from moving vehicles for both the stopped bus and bus patrons Minimizes delay to through traffic 	 May present problems to bus drivers when attempting to re-enter traffic, especially during periods of high roadway volumes Is expensive to install compared with curb-side stops Is difficult and expensive to relocate May disrupt the urban fabric in central city areas
OPEN BUS BAY	 Allows the bus to decelerate as it moves through the intersection See Bus Bay advantages 	 May cause delays to right-turning vehicles when a bus is at the start of the right turn lane See Bus Bay disadvantages
QUEUE JUMPER BUS BAY	 Allows buses to bypass queues at a signal See Open Bus Bay advantages 	 May cause delays to right-turning vehicles when a bus is at the start of the right turn lane See Bus Bay disadvantages
BUS BULB	 Removes fewer parking spaces for the bus stop Decreases the walking distance (and time) for pedestrians crossing the street Provides additional sidewalk area for bus patrons to wait Results in minimal delay for bus Accentuates the streetscape, providing space for shelters, plantings, and street furniture 	 Costs more to install compared with curb-side stops See Curb-side disadvantages Depending on site conditions, may result in permanent loss of parking

Source: Transit Cooperative Research Program Report 19: Guidelines for the Location and Design of Bus Stops

Factors Stop Location

Midblock stops are generally least desirable

□ Far or near side stops depend on bus and traffic operations and space availability

Shelter Design

Toute this inclinate as yet? REMY MARTIN

WMATA

South Miami Busway

Lymmo – Orlando

Select Bus, New York

Curb/Outside or Parking Lane
Middle Lane
Center Lane
Median
Median Center Lane
111001011
Center Lane

Curb Lane Reservation (New York, NY)

Peak Hour Bus Lane (Kansas City Kansas)

Middle Lane Reservation (Cleveland, Ohio)

Median Lane Reservation

OUTSIDE	 Lowest cost of installation Typically occupies less street space Lower capital costs associated with bus stops Easier/Safer Pedestrian Access 	 Conflicts with on-street deliveries and other curb access needs Conflicts with right turns Conflicts with bicycle travel Lower transit travel times savings Requires removal of on-street parking Does not provide strong image to priority service Can be difficult to enforce 	Restricted lane use; may permit HOVs, must accommodate turning vehicles, often restricted to peak periods only
MIDDLE	 Allows for on-street parking Removes conflicts with illegally parked vehicles Allow bus to avoid delays from turning vehicles 	 Conflicts with cars parking May require bus to pull out of traffic or construction of a bus bulb in order to access passengers Strict enforcement needed 	 Restricted lane use with HOV, turning vehicles, and peak-period only while allowing on-street parking
CENTER	Moves bus operations away from the curb and sidewalk	 Conflicts with left turns May require medians or islands with ample space to accommodate passengers waiting May require buses with driver-side doors for passenger boarding 	 Restricted lane use; may permit HOVs, must accommodate turning vehicles, often restricted to peak periods only
MEDIAN	 Clearly separates the bus stop from sidewalk activity Provides a strong sense of identity to the priority bus Enables contra-flow bus operation Best option for future conversion to streetcars / LRT 	 Pedestrian access more challenging Requires the most space and greatest street width Safety considerations involving wayward vehicles Conflicts with left turns Restricts flexibility of bus operation in using general traffic lanes or entering and exiting bus lane 	24/7 dedicated bus-only with physical separation

□ Crossing Considerations

- Safe crosswalks are needed at every bus shelter
- Signage and Markings
- Minimize Crossing Distance
- Used medians as safe havens
- Pedestrian Signals are preferred

Val de Marne, France

Chicago, Illinois

Crosswalk Principles

- Visibility
- Safety
- Minimize Crosswalk

Distance

- Signage
- Vehicle Speeds
- Exclusive Pedestrian
 Phase where necessary

Sidewalk Design

- □ All transit trips require walking on at least one end of the trip
- Sidewalk design factors
 - Connectivity
 - Sidewalk width
 - Clearances around obstructions
 - ADA compliance

Mid-Block Layout Considerations

End Block Layout Considerations

- Organizing and expressing priority bus concepts from the perspective of the traffic engineer aids communications
- There is broad acceptance of the value of examining capacity in terms of persons and not just vehicles
- Establishing a common vocabulary will assist in advancing priority bus objectives

□TIGER Grants

- ☐ Hot Spots Analysis
- **□WMATA TSP Initiative**

