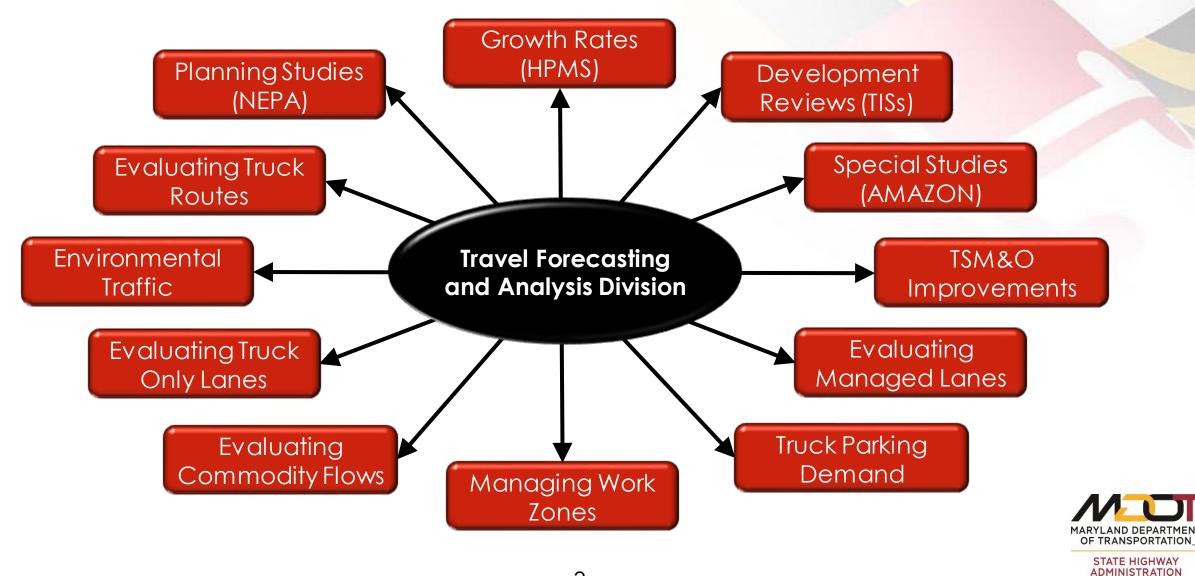


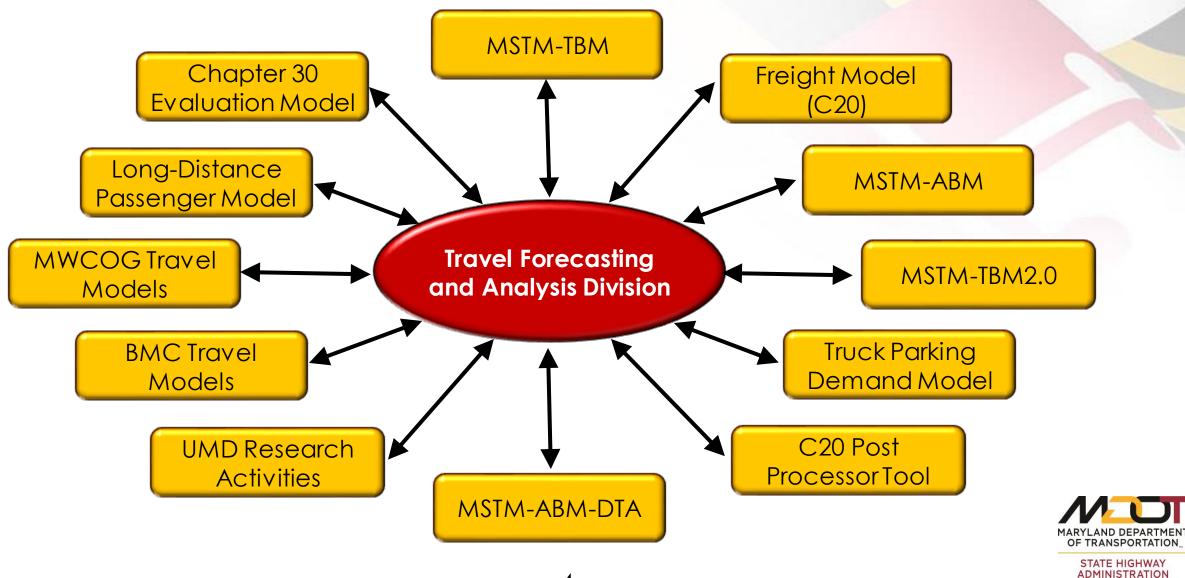
STATE HIGHWAY ADMINISTRATION

TRAVEL DEMAND MODELING ACTIVITIES AT MDOT-SHA

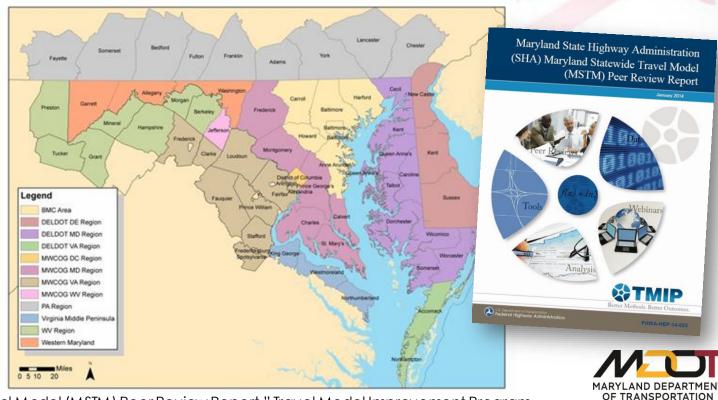
National Capital Region Transportation Planning Board Metropolitan Washington Council of Governments Travel Forecasting Subcommittee


July 22, 2022

PRESENTATION OUTLINE


- Model Objectives at MDOT-SHA (Mark Radovic)
- Integration of FHWA Long Distance Passenger Model (Sabya Mishra)
- Update to Freight Model and Post-Processors (Sabya Mishra)
- Enhancements to Data Inputs (Jonathan Avner)
- Research/Other Activities (Elham Shayanfar)
- Migration to Cube Catalog (Roberto Miquel)
- MDOT-SHAs Travel Monitoring System (TMS) (Abhay Nigam)

EVOLVING AND DIVERSE TECHNICAL NEEDS



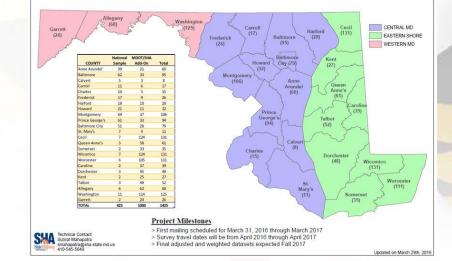
EVOLVING AND DIVERSE TECHNICAL TOOLS

MARYLAND STATEWIDE TRANSPORTATION MODEL (MSTM-TBM)

- Trip-based model with $\approx 1,500$ zones within Maryland
- Includes a 'halo' region around the state for a total of ≈1,800 zones
- Traditional 4-step model
- 4 time periods
- Runtimes of ≈ 16 hrs
- FHWA peer review*
- Active in TRBs Statewide Model Subcommittee
- Participation in Multiple Pooled Fund Studies

STATE HIGHWAY ADMINISTRATION

* "Maryland State Highway Administration (SHA) Maryland Statewide Travel Model (MSTM) Peer Review Report." Travel Model Improvement Program (TMIP). Washington, D.C.: U.S. Department of Transportation, Federal Highway Administration, January 2014.

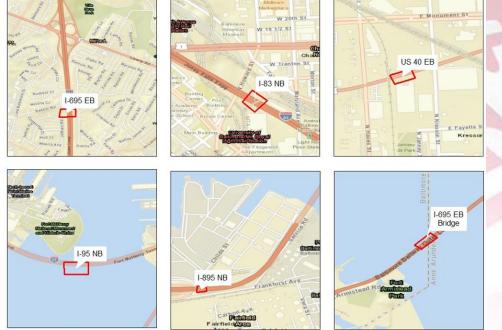

https://www.fhwa.dot.gov/planning/tmip/resources/peer_review_program/

2016-2017 National Household Travel Survey (NHTS)

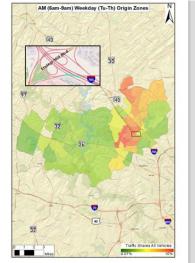
Total Number of Samples with MDOT/SHA Expanded Surveys in Western Maryland and Eastern Shore

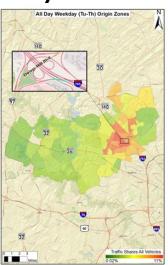
POOLED FUND PARTNERING AND BIG DATA APPLICATIONS

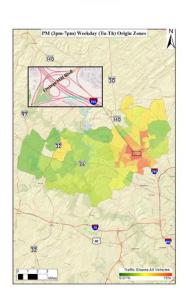
- National Household Travel Survey (NHTS/NextGEN)
- Pooled Fund Partner/TAC Member
- National Accessibility Pooled Fund Study (Accessibility Observatory)
 - Census Block level detail
 - Phase I (2014-2019)
 - Phase II (2020-2024)
 - Partners include MDOT, VDOT, DCDOT
 - Auto, Transit and Bicycle Modes)
- Support for Urban Mobility Analyses" (SUMA) Pooled Fund Study
 - Evaluating mobility datasets such as INRIX, Streetlight, O/D waypoint data)
 - Developing performance measures



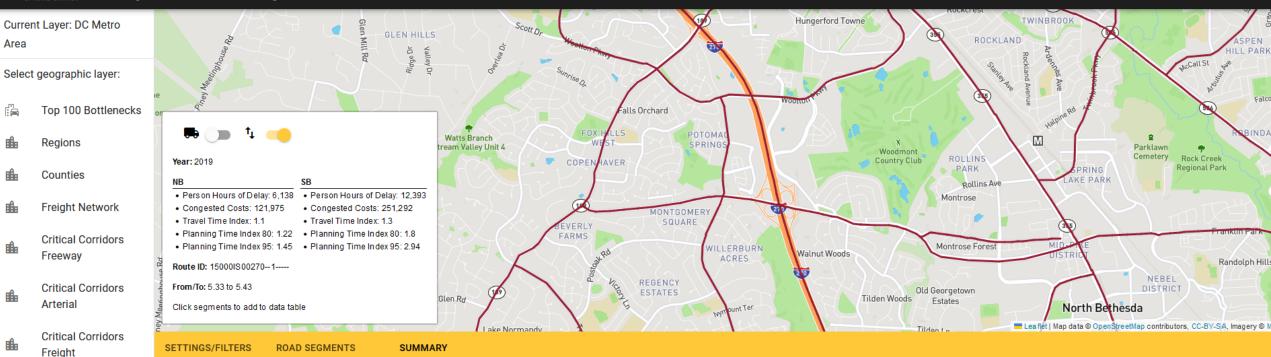
STATE HIGHWAY


BIG DATA APPLICATIONS: STREETLIGHT DATA


- SMZ ODs
- SMZ Top Routes
- SMZ Long Distance
- Corridor-level ODs
- Corridor-level Routing
- Turning Movements
- AADT Estimation
- I-695 / I-70 Interchange Study Area


Diversion Analysis on I-895 Construction

Interchange OD Analysis


OF TRANSPORTATION. STATE HIGHWAY ADMINISTRATION

MARYLAND DEPARTMENT

MARYLAND ROADWAY PERFORMANCE TOOL (MRPAT)

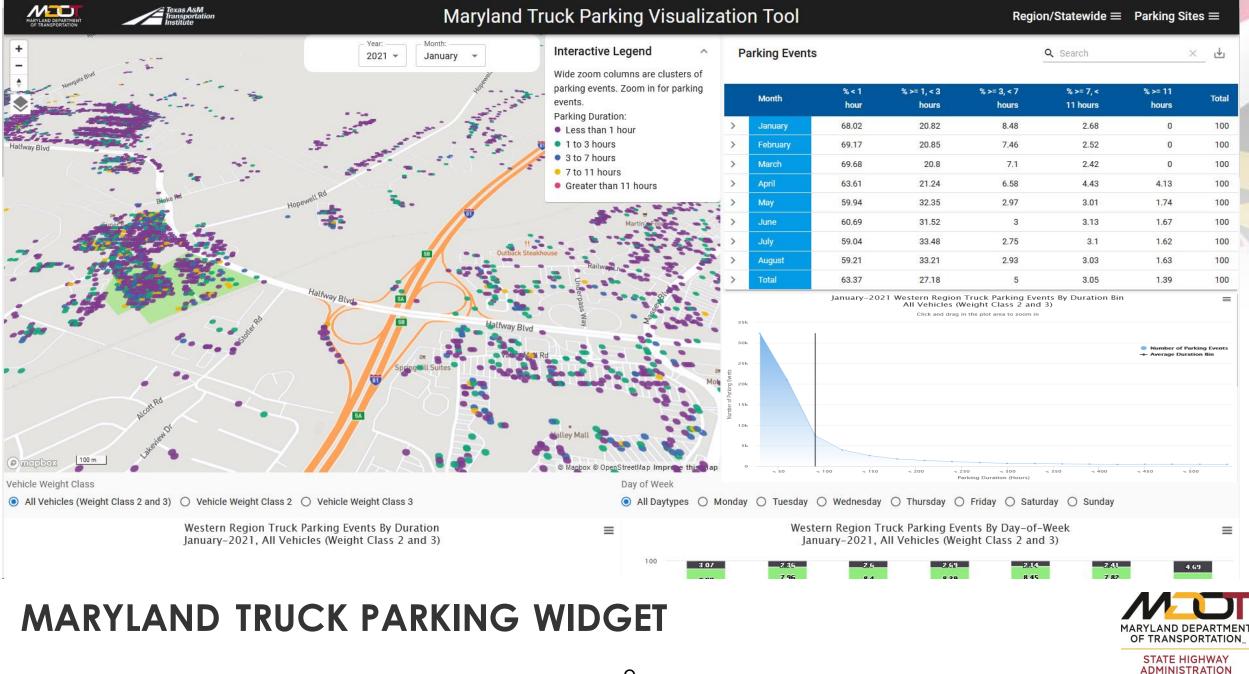
her				\sim .		ke Normandy	¥ 💎 / 🗡		they a		Tilden Lo	Lea flet	Map data © OpenStreet№	ap contributors, CC-BY-SA	l, Imagery © N
SETTIN	GS/FILTERS	ROAD SE	GMENTS	SUMN	IARY										
											Q Searc	1	× Group By Route ID ▼		
	Route ID		From	То	Person Hours of Delay	Planning Time Index 80	Planning Time Index 95	AADT	Peak Vehicle Miles of Travel	Congested Costs	Congested CO2 Lbs	Normal CO2 Lbs	Reference Speed	Congested Speed	Travel Time Index
Show	10000US0001 1	5B-	0	0.19	17,024.259	1.841	2.6	10,992	802.658	357,624.068	72.867	465.317	28.315	19.622	1.451

8

Area

[A

É


B

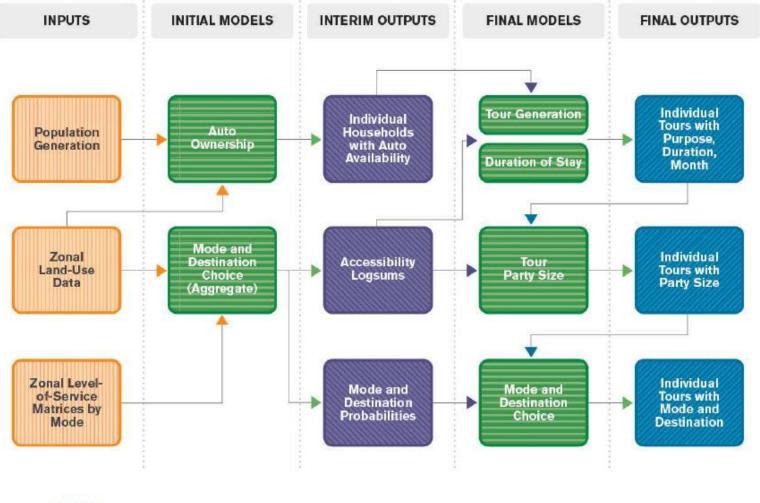
B

f

É

f

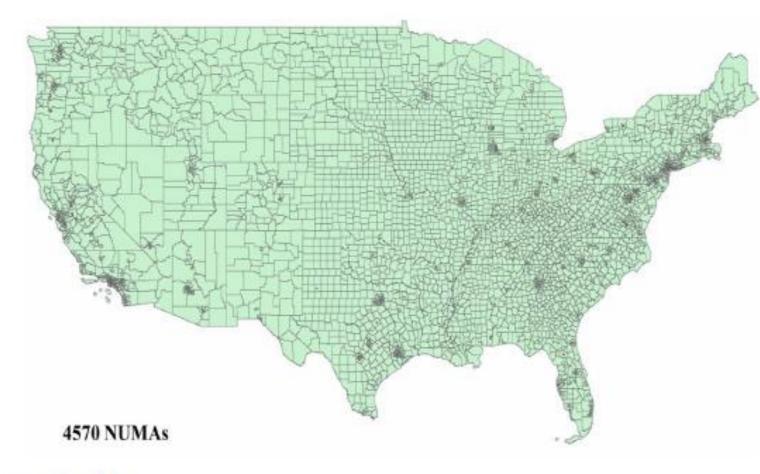
FHWA LONG-DISTANCE PASSENGER MODEL


FHWA LONG-DISTANCE PASSENGER MODEL

- Derived from FHWA National long-distance model
- Consists of national synthetic population
- Tour-based
- Includes tour party size and part composition
- Multi-modal tours including rail and air passengers
- Open source
- Flexibility in integration
- Standalone package
 - No additional software needed

MODEL STRUCTURE

STATE HIGHWAY


ADMINISTRATION

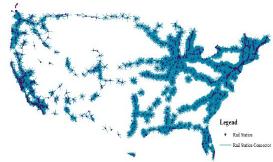
Source: FHWA

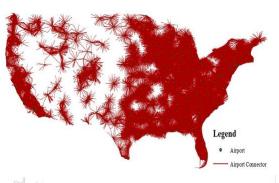
FHWA. National Long-Distance Passenger Model: User Guide Exploratory Advanced Research Program DTFH61-11-C-00015, June 2018.

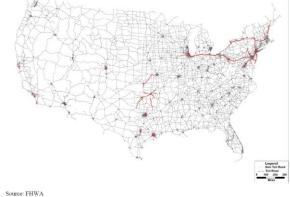
¹²

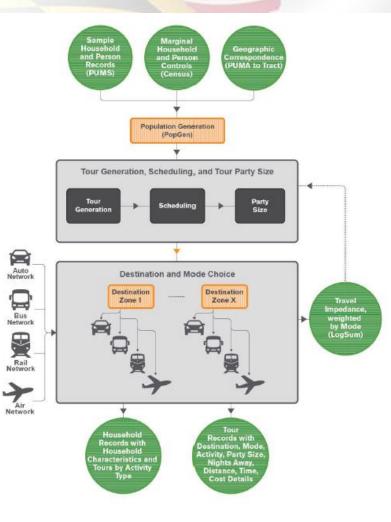
INPUT DATA – ZONE SYSTEM

Source: FHWA

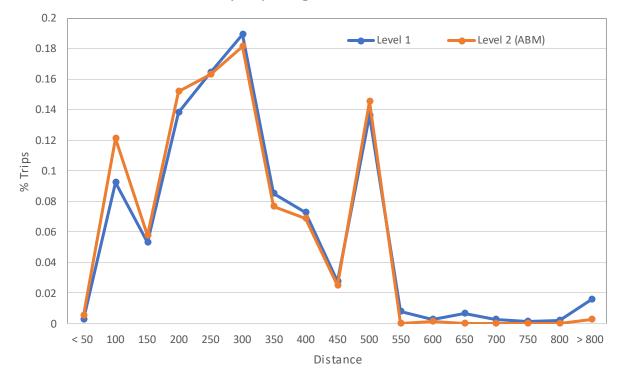

- Total household
- Enrollment
- Park area
- Employment type
- Distance to nearest
 - Bus, rail, airport

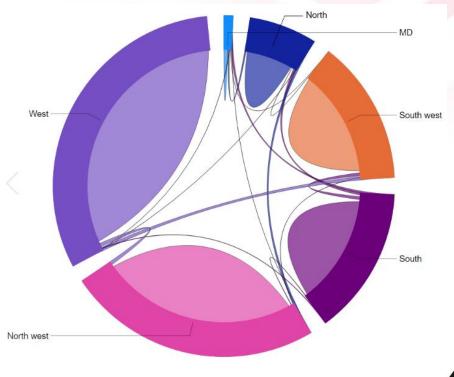

INPUT DATA – NETWORKS


- Highway (with toll)
- Rail
- Bus
- Air



Source: FHWA

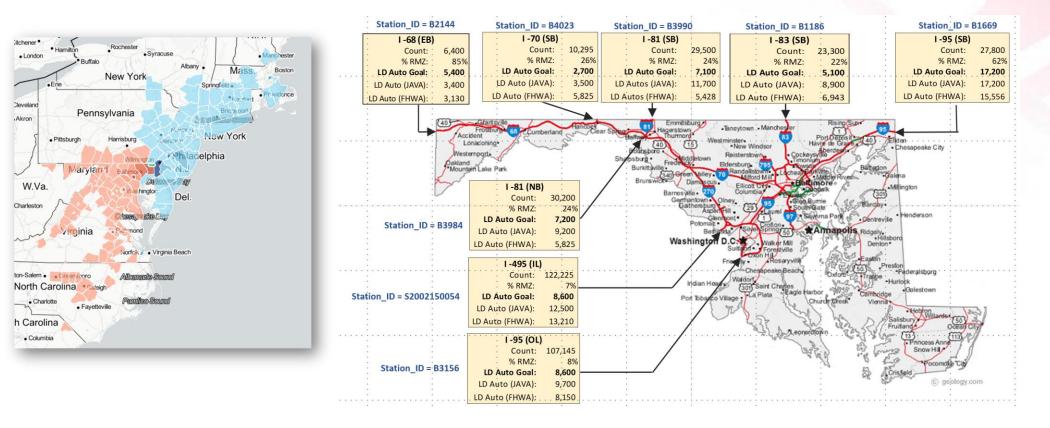

14



MODEL RESULTS

- Trip length distribution matches well
- Regional flows are reasonable (FHWA study, and other reports)

Daily Trip Length Distribution



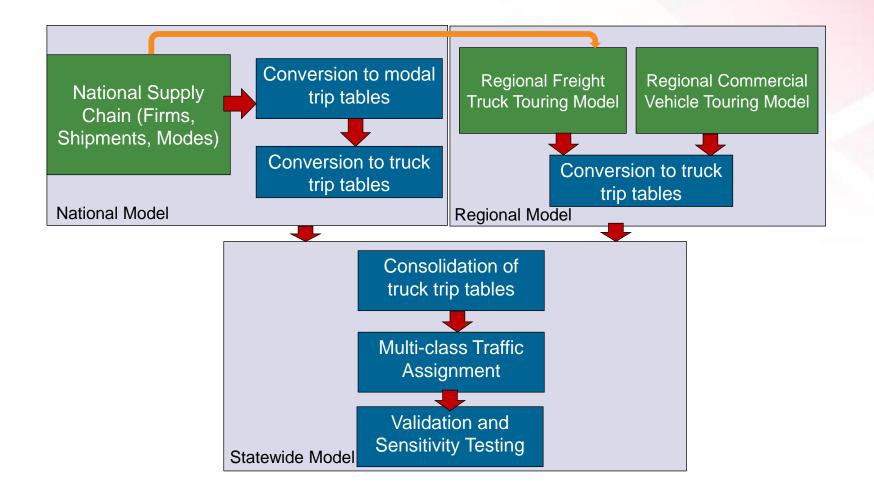
STATE HIGHWAY ADMINISTRATION

15

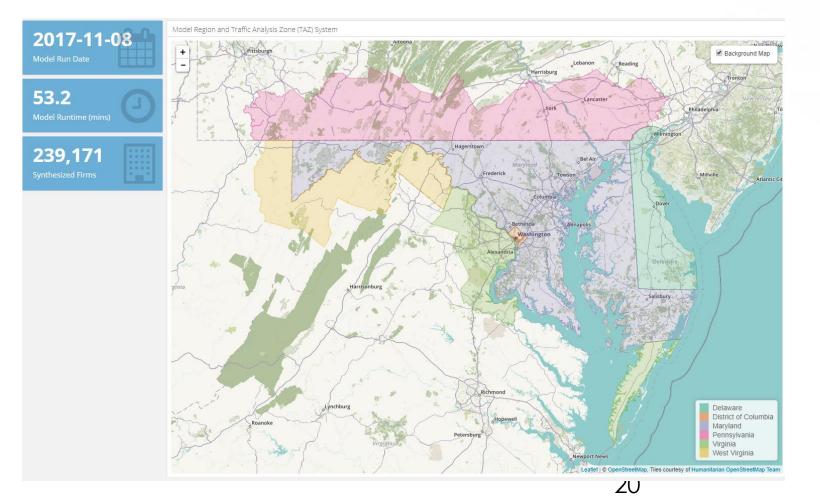
VALIDATION

INRIX data used

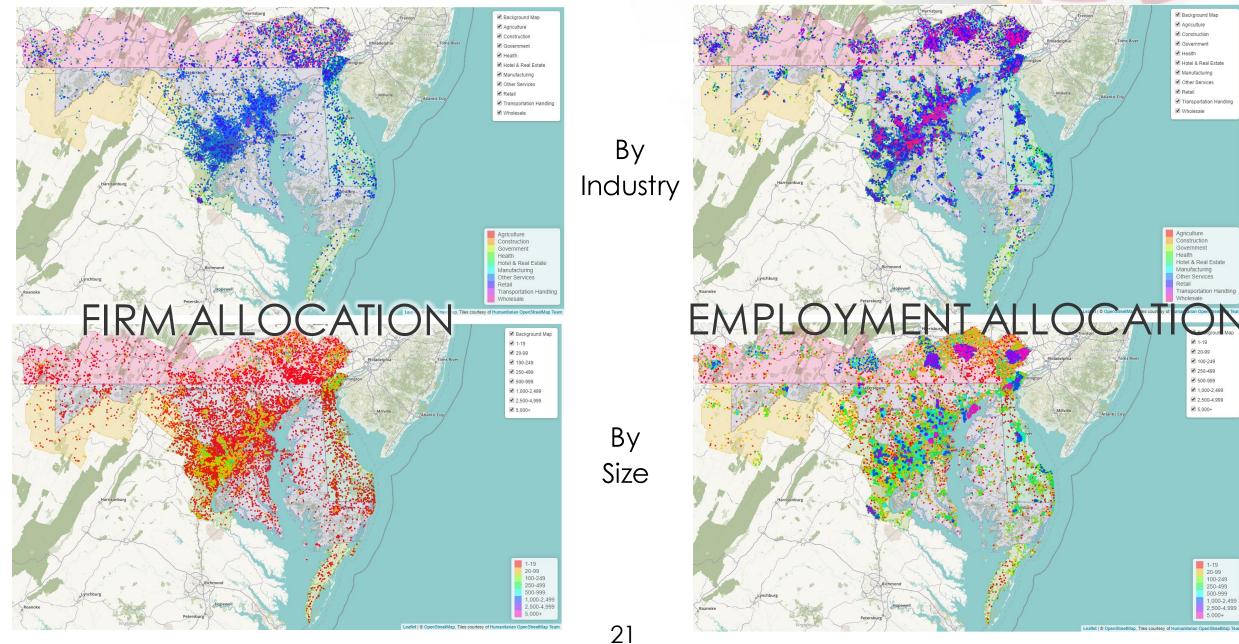
SHRP2/C20 FREIGHT MODELS


DEVELOPMENT OF BEHAVIOR-BASED FREIGHT MODEL

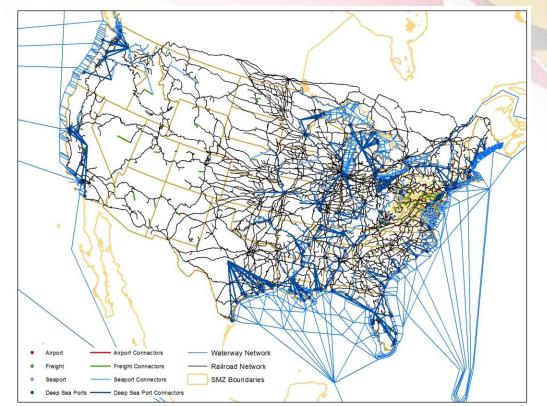
- Based on SHRP2/C20 research grant
- Includes national supply-chain model, regional truck model, and commercial vehicle truck touring model
- Freight tours available
- O-D's can be based on any time slice (e.g., every 15 minutes)
- Truly multimodal model (not just truck based)
- Freight mode choice can easily be done
- Truck touring model for the entire modeling region
- Open source model structure in R (no installations needed)
- New enhanced dashboard for visualization


C20 FREIGHT MODEL: APPROACH

C20 FREIGHT MODEL: DASHBOARD

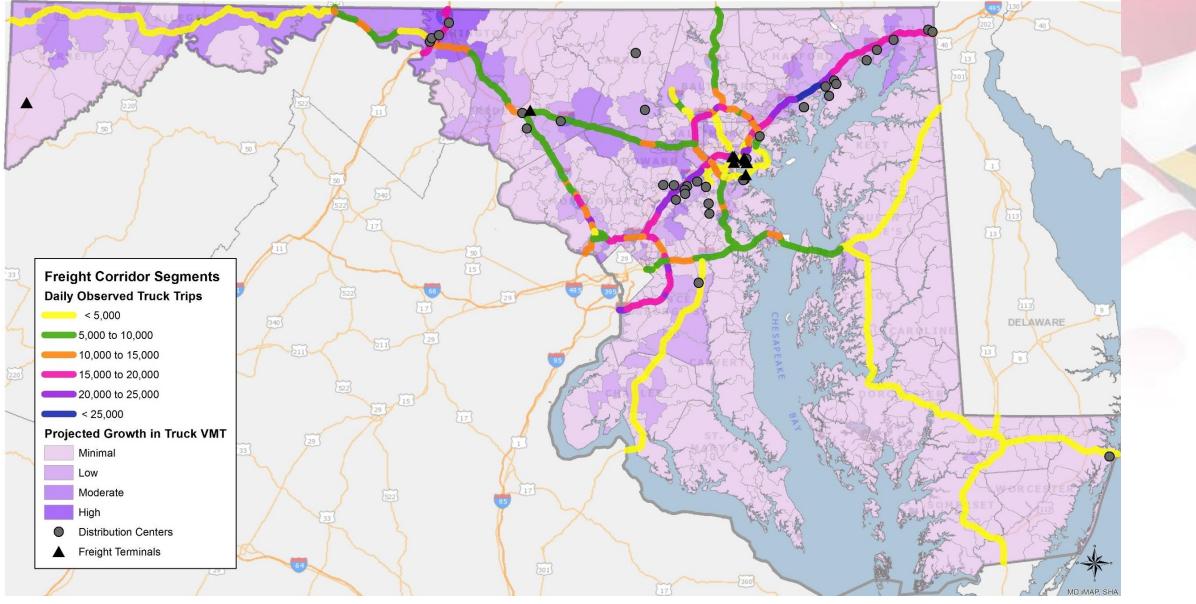

- Truck touring model includes MD, DE, DC and portions of VA, PA and WV
- 5,281 SMZs and 132 RMZs

C20 FREIGHT MODEL: FIRM SYNTHESIS



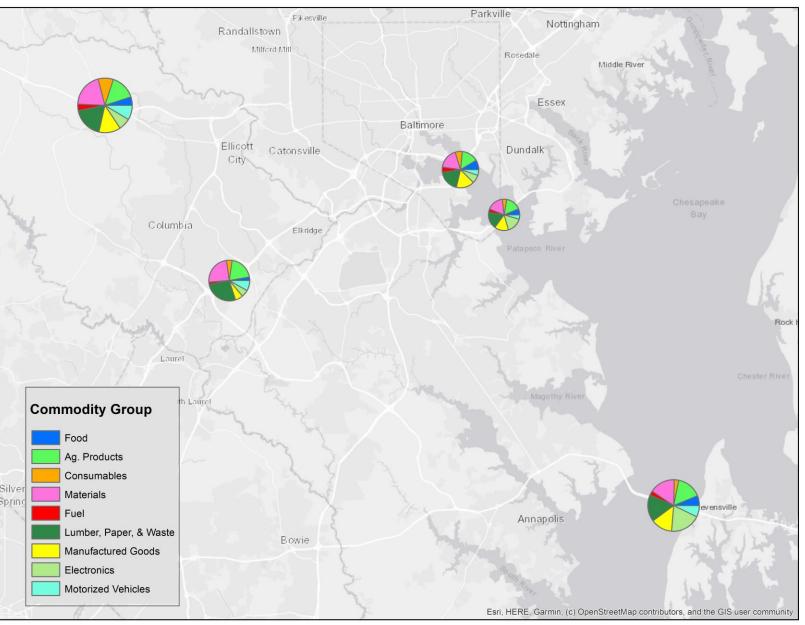
C20 INPUT DATA

- National multimodal network and properties
 - Road/Rail/Waterway/Pipeline
 - Higher resolution in study area
- Zone system
 - Internal and external
- Network skims
- Desired time of days
 - Eight times of day
 - 3-AM Peak (early, peak, late)
 - 1-Midday
 - 3-PM Peak (early, peak, late)

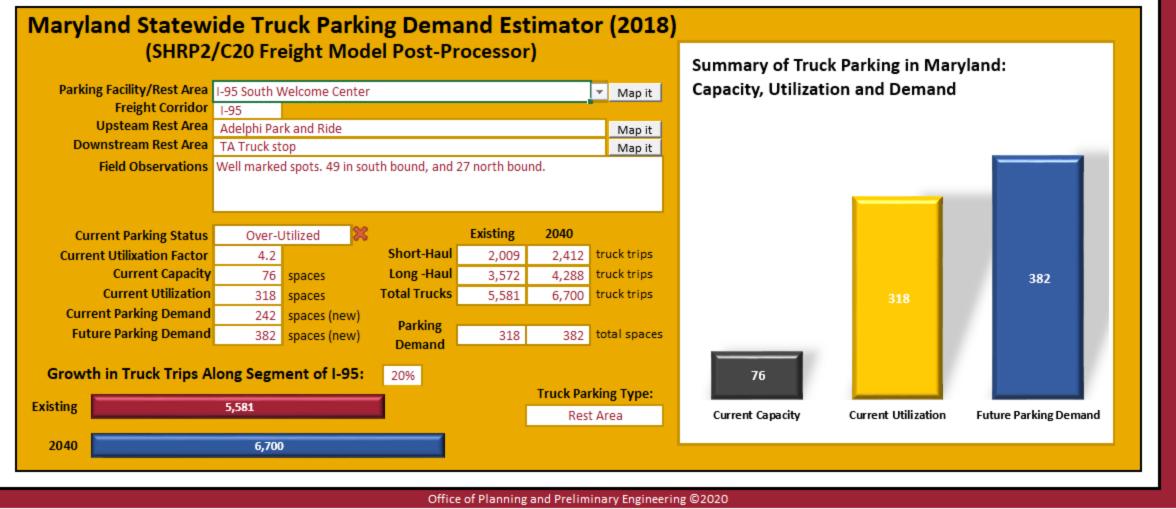

22

• 1-Nightime

STATE HIGHWAY

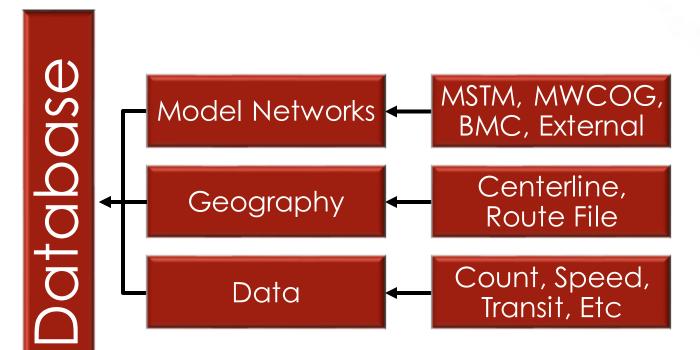


CHANGE IN DAILY TRUCK VMT


COMMODITY GROUP ASSIGNMENT ON KEY CORRIDORS

- Bay Bridge(US 50)
- Baltimore Harbor Tunnel (I-895)
- Key Bridge(I-695)
- I-70
- I-95

STATE HIGHWAY ADMINISTRATION

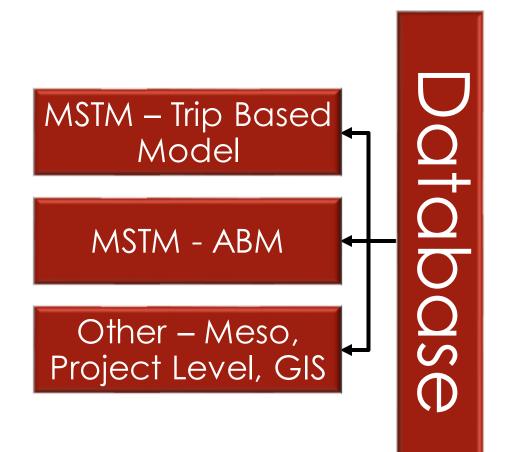

MARYLAND TRUCK PARKING DEMAND TOOL

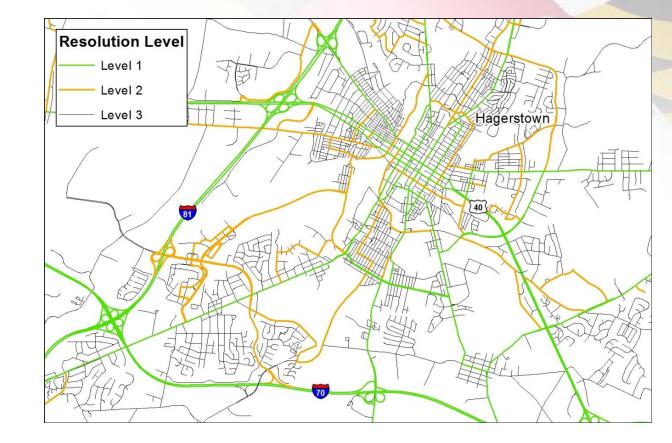
ENHANCEMENTS/REFINEMENTS TO KEY INPUTS

MSTM MDOT-SHA DATA LINKAGES

- Built from Centerline file
 - Association of Route, MSTM (v1) and other source datasets to centerline segmentation.
 - Linkage with SHA asset data
 - Creation of segmentation to support model network requirements
 - Single-Point intersection coding for future junction modeling

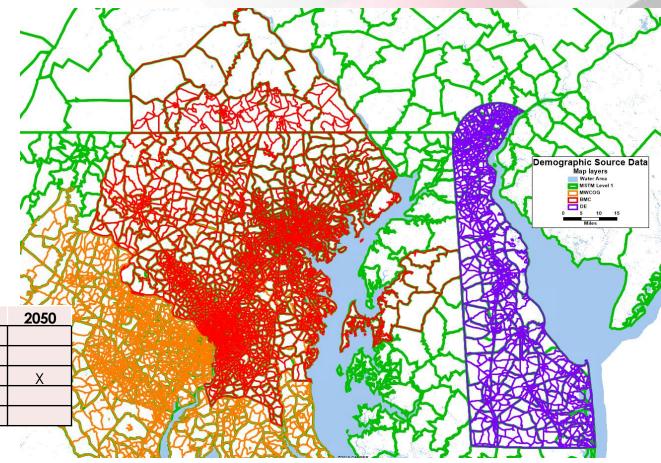
MSTM MDOT-SHA DATA LINKAGES


SHA ADT Segments


MSTM Links

- Linkages to and from MSTM
- Create a linkage TO MSTM:
 - Centerline attribute data (average, max, etc.)
- Create a linkage FROM MSTM:
 - Reporting of model data
 - Performance
 Measures

MDOT-SHA MULTI-RESOLUTION DATABASE

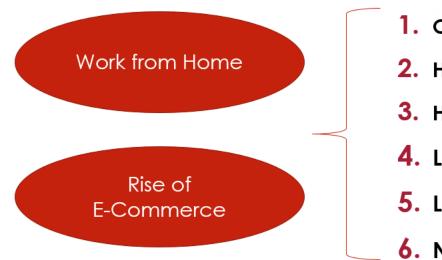


MSTM DATA LINKAGES WITH BMC AND MWCOG

30

- Build zonal geography and attributes from MPOs for consistency
 - MWCOG = 2.4 Model
 - BMC = 2022 Validation
 - DE = 2022 Zonal Updates

									12
15	2019	2020	2025	2030	2035	2040	2045	2050	à
									-
	Х		Х	Х		Х	Х		2
		Х		Х		Х		Х	Z
<			Х	Х		Х			5
<		Х	Х	Х	Х	Х	Х		ζ
		X	X X	X X X	X X X X X X	X X X X X X	X X X X X X X X	X X X X X X X X X X	X X X X X X X X X X



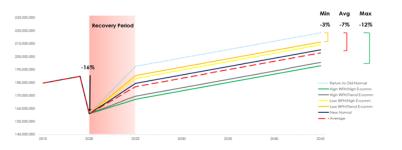
RESEARCH ACTIVITIES

COVID-19 IMPACT SCENARIOS ANALYSIS

- Scenario Analysis using the MSTM-TBM
- Long-term impacts of the pandemic on travel demand

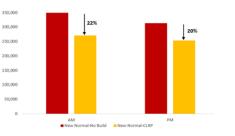
- Old Normal
 High WFH/ High E-com
 High WFH/ Trend E-com
- 4. Low WFH/ High E-com
- 5. Low WFH/ Trend E-com
- 6. New Normal

Reference: "COVID-19 Impacts on Mobility and Travel Demand", submitted to <u>"Case Studies on Transport Policy"</u> journal (currently under review)



COVID-19 Impacts on Future Travel Demand

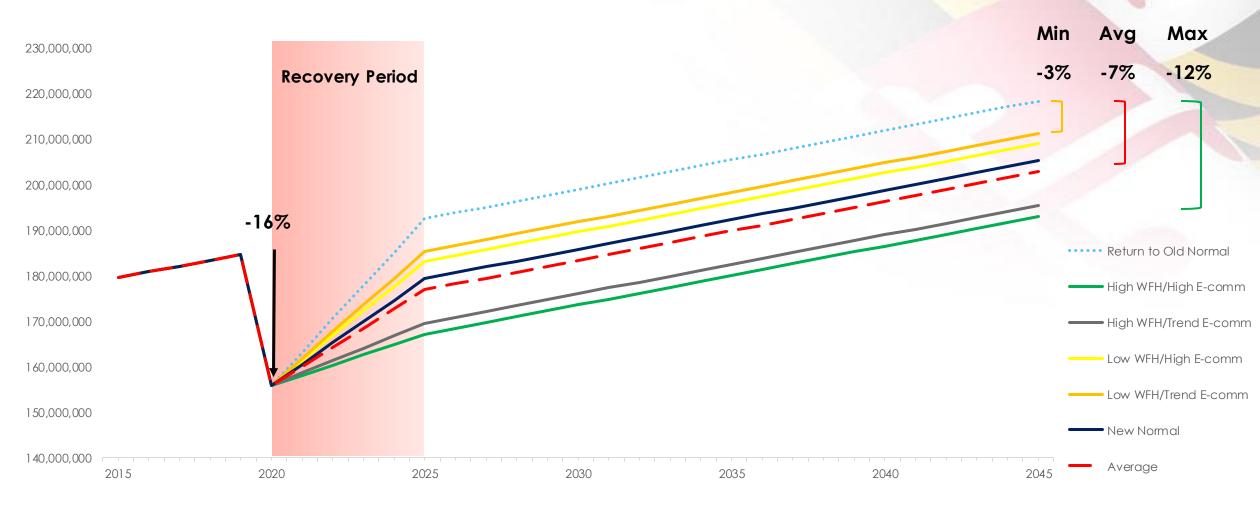
During the COVID-19 pandemic, federal, state and local governments initiated numerous mandates in order to reduce the spread of the virus. These mandates included work from home (WFH) orders, remote learning for students and faculty and on-line services for restaurants and businesses. The combination of these behavior changes had a profound impact on the transportation system and will likely have long-lasting impacts on the future of travel demand. The observed travel behavior changes captured through "big Data" analysis tools during the pandemic provides significant insight into the broader impacts of **"Travel Demand Management"** strategies such as teleworking, remote learning and e-commerce on future travel. Although the extent of these behavior changes is yet to be determined, this analysis de monstrates potential impacts of various outcomes based on data-driven future assumptions. This analysis designed six scenarios using the Maryland Statewide Transportation Model (MSTM) based on different levels of WFH and e-commerce growth and evaluated the sensitivity of behavior changes of marges of impacts that is anticipated on the transportation system :


- 1. Old Normal: no-long term impacts of COVID-19 with historical levels of WFH and e-commerce.
- 2. Normal: Likely scenario for long term impacts of COVID-19 that represent an expected level of WFH and e-commerce
- 3. High WFH / High E-Commerce
- High WFH / Trend E-Commerce
- 5. Low WFT / High E-Commerce
- 6. Low WFT / Trend E-Commerce

HGURE 1 - MSTM STATEWIDE VEHICLE MILES TRAVELED

FIGURE 2 - IMPACT OF CURPINVESTMENTS ON DELAY (VHD) REDUCTIONS

Furthermore, Future scenarios are applied at "No Build" and "CLRP" program levels to assess how CLRP investments impact future delays under "New Normal" conditions. The results show significant improvements on peak hour delays with the imple mentation of CLRP investments. Though the long-term impacts to travel stemming from the COVID-19 pandemic are likely to reduce overall congestion in Maryland, these reductions are not expected to overtake the need for a robust and responsible transportation program in the state.



SCENARIO FRAMEWORK

			Scenario							
Impacts	Level	Parameter Change	1	2	3	4	5	6		
WFH (Work Trips)	High	Increased - all possible			Х	Х				
	Med	Increased - some		Х			Х	Х		
	Low	Calibrated	Х							
Remote Learning	High	Near all remote			Х					
	Med	Some (Hybrid)				Х	Х	Х		
	Low	Calibrated	Х	Х						
Long Distance Truck	High	Increase # of long-distance trucks			Х		Х			
	M/H	Moderate Increase		Х		Х		Х		
	Med	Calibrated	Х							
Vehicle Occupancy	High	Shift to SOV								
	M/H				Х	Х	Х	Х		
	Med	Calibrated	Х	Х						
	Low	Shift to higher HOV								
Commercial Vehicle	High	Increase #			Х		Х			
	M/H	Moderate Increase		Х		Х		Х		
	Med	Calibrated	Х							
Discretionary Travel (non-shopping)	High	Increased			Х	Х				
	M/H						Х			
	Med	Calibrated	Х	Х				Х		
	Low	Decrease								
Non Home Based Work	High	Decreased - all			Х	Х				
(Tied to WFH)	Med	Decreased - some		Х			Х	Х		
	Low	Calibrated	Х							
Non Home Based Other	High	Increased								
	Med	Calibrated	Х	Х			Х	Х		
	Low	Lower			Х	Х				
Home Based Shopping	High	Higher								
	Med	Calibrated	Х	Х		Х		Х		
	Low	Lower			Х		Х			

Statewide Vehicle Miles Traveled (MSTM)

STATE HIGHWAY

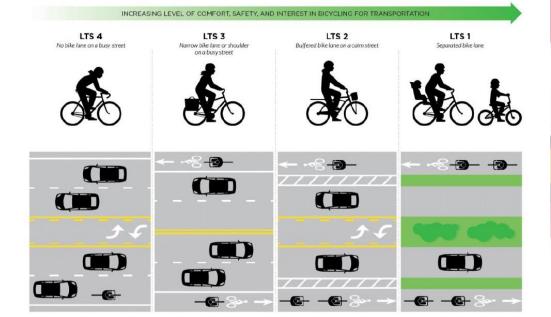
Scenario analysis framework capabilities:

- CAV Scenario Analysis as part of the CAV strategic plan.
- MDOT strategies such as

Complete Street

COMPLETE STREETS

 MDOT Policy: safety and mobility of all roadway users by developing context sensitive solutions that support pedestrian bicycle



LEVEL OF TRAFFIC STRESS (LTS) (PHASE 1)

- Integration of LTS in estimating nonmotorized share.
- UMD research effort to estimate elasticities of LTS to choosing nonmotorized modes.

BS3	HBS4	HB55	HB01	HBO2	HBO3	H804	HBOS	HBSCH	NHBW	NHBO	Current LTS	New LTS	%Difference			
910	0.889	0.865	0.755	0.834	0.838	0.837	0.848	0.762	0.826	0.867	3.56	3.20	-10.04%	Assing	ing new	LTS
917	0.908	0.884	0.794	0.859	0.862	0.859	0.872	0.799	0.850	0.879	3.62	3.26	-9.98%			
787	0.775	0.710	0,496	0.655	0.661	0.652	0.688	0.510	0.623	0.687	3.07	2.76	-9,99%			
875	0.866	0.834	0.710	0.801	0.804	0.799	0.821	0.718	0.778	0.819	3.46	3.11	-10.09%	Zone(s) (1	to 1674)	
843	0.821	0.771	0.597	0.726	0.731	0.728	0.751	0.608	0.704	0.762	3.26	2.94	-9.86%	From	To	New LTS
863	0.854	0.815	0.678	0.779	0.783	0.777	0.801	0.687	0.758	0.802	3.40	3.06	-10.06%	1	5	3
826	0.814	0.767	0.594	0.722	0.726	0.777	0.748	0.606	0.693	0.749	3.26	2.93	-10.00%	Acates		
858	0.833	0.799	0.634	0.751	0.756	0.753	0.774	0.644	0.739	0.799	3.33	3,00	-10.03%	Assign	the new	WLIS
872	0.853	0.820	0.670	0.776	0.780	0.778	0.796	0.680	0.769	0.821	3.40	3.06	-10.05%	Iles th	Use the current LTS	
866	0.848	0.819	0.676	0.778	0.782	0.778	0.800	0.685	0.759	0.812	3,40	3,06	-10.06%	Use th	e currer	ILIS
827	0.793	0.737	0.532	0.683	0.690	0.689	0.711	0.545	0.662	0.734	3.15	2.84	-9.87%			
845	0.818	0.761	0.573	0.711	0.717	0.717	0.736	0.585	0.701	0.760	3.23	2.91	-9.90%			
859	0.828	0.781	0.604	0.733	0.739	0.739	0.755	0.615	0.723	0.784	3.29	2.96	-9.98%			11.1.1.1.1.1.T.
841	0.813	0.763	0.566	0.705	0.712	0.712	0.732	0.578	0.703	0.768	3.22	2.90	-9.96%	Applying	% chang	e in LTS
868	0.842	0.799	0.632	0.751	0.757	0.757	0.773	0.642	0.749	0.805	3.34	3.01	-9.90%			
867	0.845	0.810	0.648	0.761	0.766	0.765	0.782	0.658	0.761	0.817	3.37	3.03	-10.00%	10-0-00000		
877	0.869	0.850	0.721	0.808	0.811	0.805	0.828	0.729	0.804	0.849	3.49	3.14	-9.95%	Zone(s) (1	to 1674)	
889	0.869	0.842	0,708	0.802	0.806	0.804	0.820	0.716	0.798	0.847	3.47	3.13	-9.88%	From	To	%Change
885	0.860	0.821	0.671	0.779	0.784	0.785	0.797	0.680	0.778	0.828	3,41	3.07	-10.08%	1	5	-10%
862	0.829	0.780	0.599	0.730	0.736	0.738	0.752	0.610	0,726	0.787	3.28	2.96	-9.87%			
921	0.914	0.896	0.812	0.571	0.873	0.871	0.884	0.817	0.864	0.892	3.65	3.29	-9.94%	Apply the	% chan	ge in LTS
902	0.889	0.862	0.748	0.829	0.832	0.830	0.844	0.755	0.825	0.863	3.54	3.19	-9.98%		CONTRACTOR OF STREET	10 x 14
839	0.808	0.759	0.572	0.710	0.716	0.714	0.735	0.584	0.688	0.754	3.22	2.90	-9.97%	Apply	no cha	nges
879	0.850	0.809	0.657	0.769	0.774	0.775	0.788	0.667	0.756	0.810	3.38	3.04	-10.10%			

The calculator includes the following tabs (for details, see the Excel file):

Level of Traffic stress for bicyclists

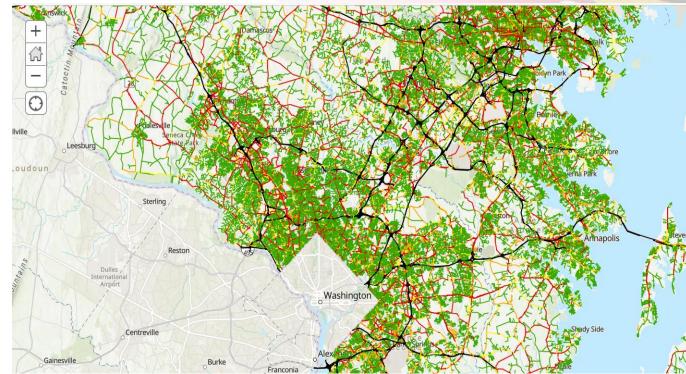
Direct and cross elasticities resulting from the general model

	Car	Bike	Walk
Travel time Car	-0.0420	0.0597	0.0472
Travel time Bike	0.1309	-0.3852	0.1234
Travel time Walk	0.1630	0.1932	-0.9905
Travel Cost Car	-0.0709	0.1003	0.0810
Parking Cost Car	-0.0404	0.0542	0.0528
LTS Bike	0.1871	-0.5653	0.2021
LTS Walk	0.0958	0.1068	-0.5679

STATE HIGHWAY ADMINISTRATION

The motorized shares calculator

FUTURE LTS RESEARCH EFFORTS (PHASE 2)


- Integrate LTS attribute in MSTM multi-resolution network.
- Re-estimate mode choice model to include bike and walk modes

MDOT LTS Methodology

Mixed Traffic Criteria

Number of Lanes	Effective ADT	Prevailing Speed							
Number of Lanes	Effective ADT	<20mph	25mph	30mph	35mph	40mph	45mph	50+mph	
Unland 2 way	0-750	1	1	2	2	3	3	3	
Unlaned 2-way	751-1500	1	1	2	3	3	3	4	
street (No centerline)	1501-3000	2	2	2	3	4	4	4	
centenine)	3000+	2	3	3	3	4	4	4	
1 thru lane per	0-750	1	1	2	2	3	3	3	
direction (1-way, 1	751-1500	2	2	2	3	3	3	4	
lane street or 2-	1501-3000	2	3	3	3	4	4	4	
way street with centerline	3000+	3	3	3	4	4	4	4	
2 thru lanes per	0-8000	3	3	3	3	4	4	4	
direction	8001+	3	3	4	4	4	4	4	
3+ thru lanes per direction	Any	3	3	4	4	4	4	4	

Maryland Bicycle Level of Traffic Stress (LTS)

STATE HIGHWAY ADMINISTRATION

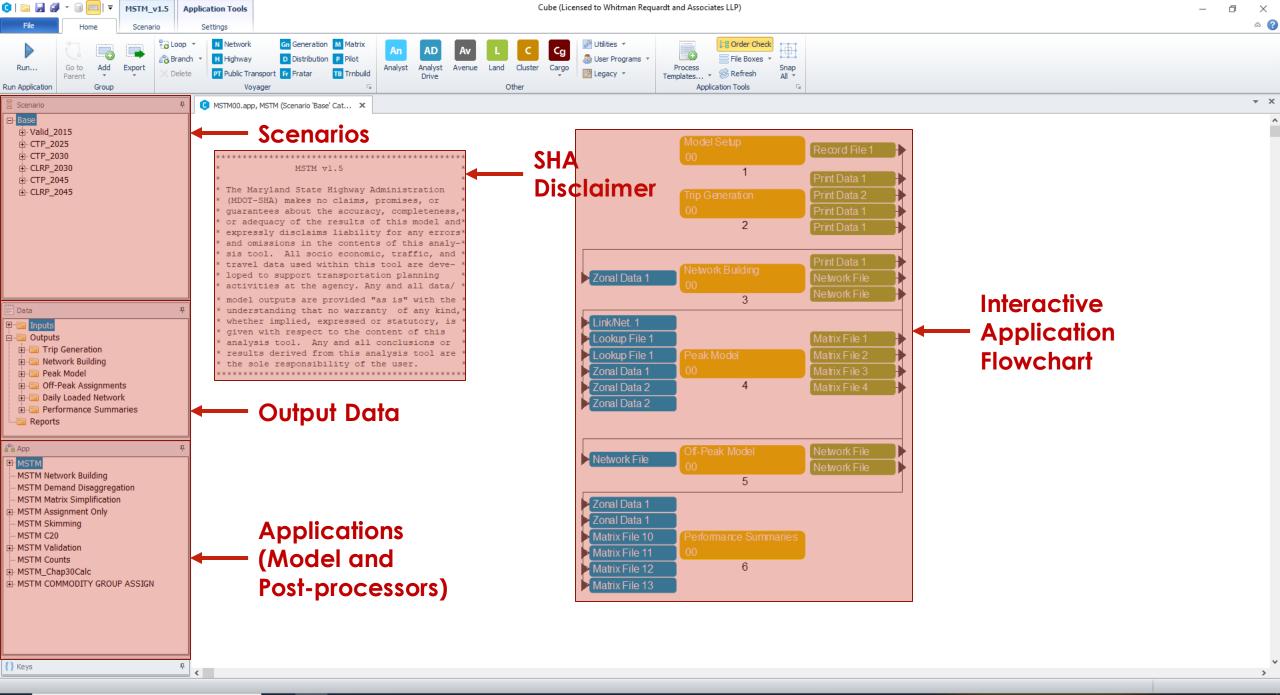
Effective ADT = ADT for two-way roads. Effective ADT – 1.5' ADT for one-way roads

CUBE CATALOG MIGRATION

STATE HIGHWAY ADMINISTRATION

MSTM CUBE CATALOG

- Older versions of the model (pre-v1.5) driven by a batch macro interface.
 - Keystrokeinterface
 - Limited modularity
 - Hardcoded parameters
 - Difficult to modify on the fly
- Newer versions of the model (v1.5+) implemented in a Cube Catalog.
 - Graphical interface
 - Very modular
 - Parameters keyed to scenario interface
 - Easy to customize

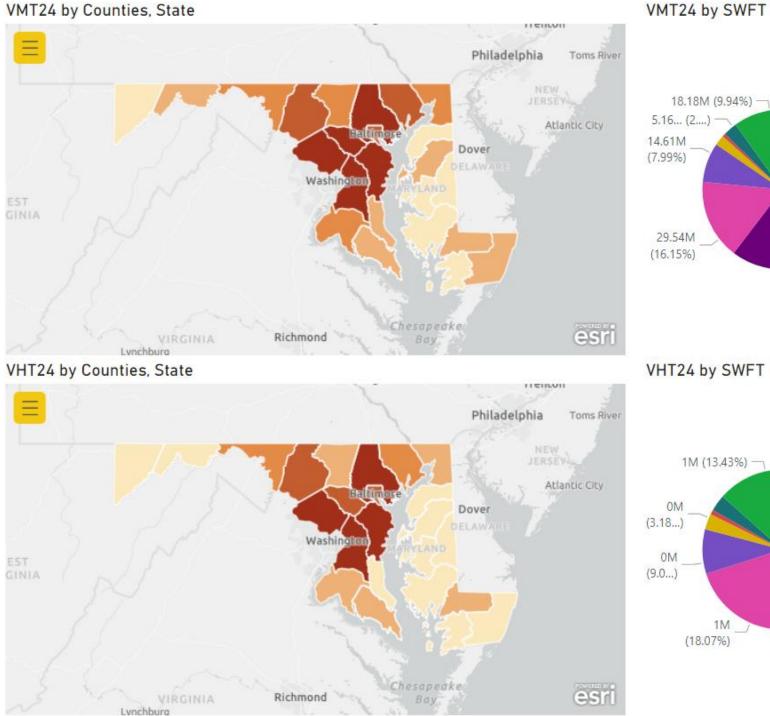

STATE HIGHWAY

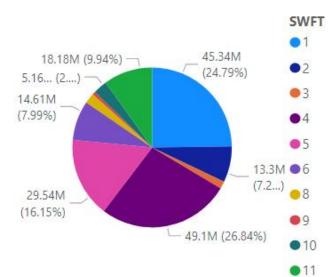
MSTM CUBE CATALOG

- 2 3 months to complete the transition
 - Upfront time to read through the batch file and flowchart the model process
 - Most of the scripting was already in Voyager
 - Included coordination time to make sure that the Catalog setup adequately reflected SHA's desired scenario management approach
- Work was done by consultant with significant experience in setting up Cube Catalogs.
 - Experience with Cube Catalog made it possible to interpret the model scripts and quickly flowchart and layout the catalog.
 - For someone with less Cube Catalog experience, transitioning the model would take more time.

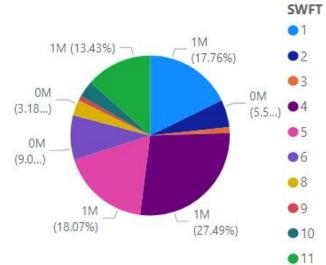
STATE HIGHWAY

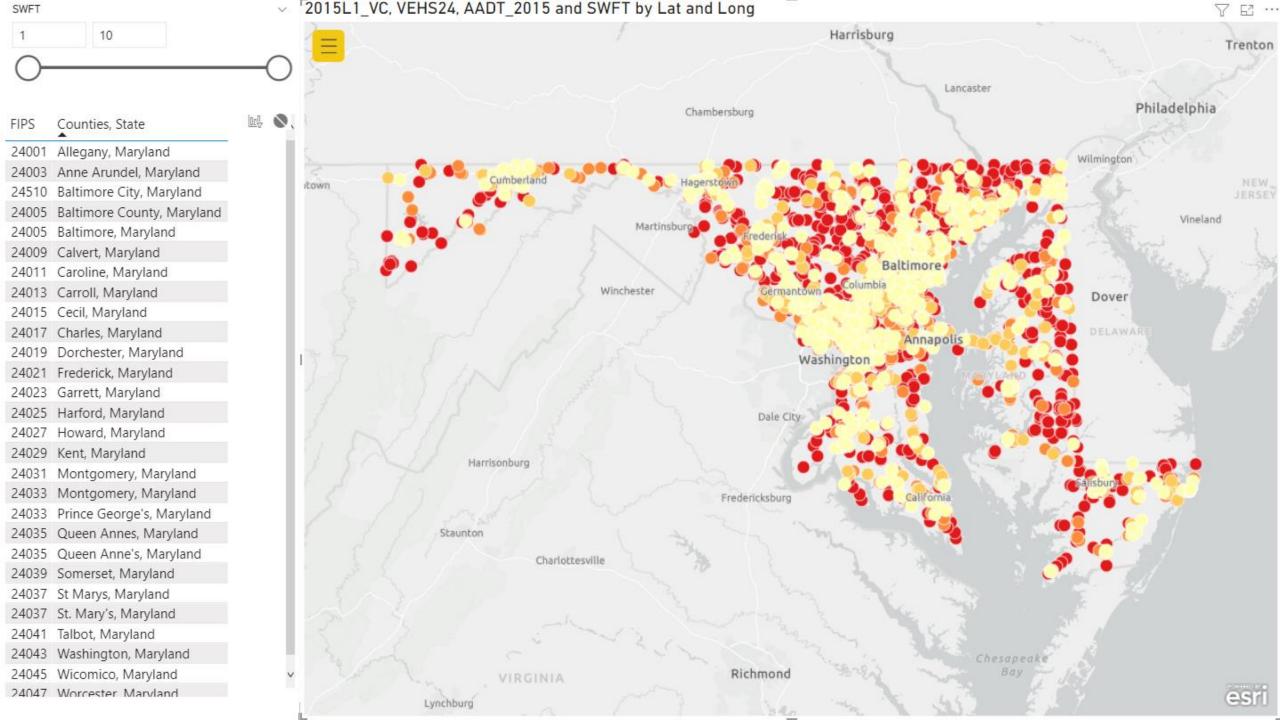
Type here to search


| 🛱 🗯 🔤 🖬 📓 🧐 🧏 🚼 🔚 😁 💁 🕄 💐 🚺 🧔


🕒 🚞 📄 м	MSTM_v1.5		Cube (Licensed to Whitman Requardt and Associates LLP)		– 0 ×
File	Scenario				۵ (?)
<u>^</u>		Add Report			
Nerge S Refresh	Run Script	→ Append Sibling Add Report			
Properties	Run	Add			
Catalog 5		hild E Delete Scenario Reports			
Scenario			alid_2015 (Application MSTM) ×		* X
⊡ Base					
E Valid_2		Long Distance Auto Settings			
		🔽 Run Java Long Distance Auto Model			
⊡ CLRP_2		Long Distance Auto Adjustment Factors:	C:\MSTM_v1.5.20220428.TRN\PARAMETERS\MSTM_LDAuto_AdjFac.mat	Browse Edit	
		Folder containing Long Distance Auto Matrices if not running Java:	x		
⊡ CLRP_2	045	Assignment Settings			
		Maximum Number of Equilibrium Assignment Iterations:	100		
		Relative Gap for Assignment Closure:	0.0001		
		Alpha and Beta Lookup File	C:\MSTM_v1.5.20220428.TRN\PARAMETERS\MSTM_VDF.dbf	Browse Edit	
		Value of Time in ¢/Minute for HH Income < \$30,000:	8.4		
		Value of Time in ¢/Minute for HH Income = \$30,000 -\$59,999:	25		
	Ф	Value of Time in ¢/Minute for HH Income = \$60,000 -\$99,999	41.7		
Data	÷	Value of Time in ¢/Minute for HH Income = \$100,000 -\$150,000:	50.4		
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	5	Value of Time in ¢/Minute for HH Income > \$150,000 + TRUCKS:	106.4		
📄 🗄 🔚 Trip	Generation	Passenger Car Equivalents (PCE) - Single Unit Trucks:	1.5		
	work Building	Passenger Car Equivalents (PCE) - Multi Unit Trucks:	2.5		
⊕ 🔚 Peal	к моаеі Peak Assignments	Passenger Car Equivalents (PCE) - Long Distance Trucks:	2		
	y Loaded Network				
	ormance Summaries				
Reports	3				
App					
	· · ·				
	work Building				
	nand Disaggregation				
MSTM Mat MSTM Ass	rix Simplification				
MSTM ASS					
MSTM C20	-				
🖶 MSTM Vali	dation				
MSTM Cou	ints				
• MSTM_Cha					
. MSTM CON	MMODITY GROUP ASSIGN				
			Save Close Next Badk Run		
{} Keys	Р				

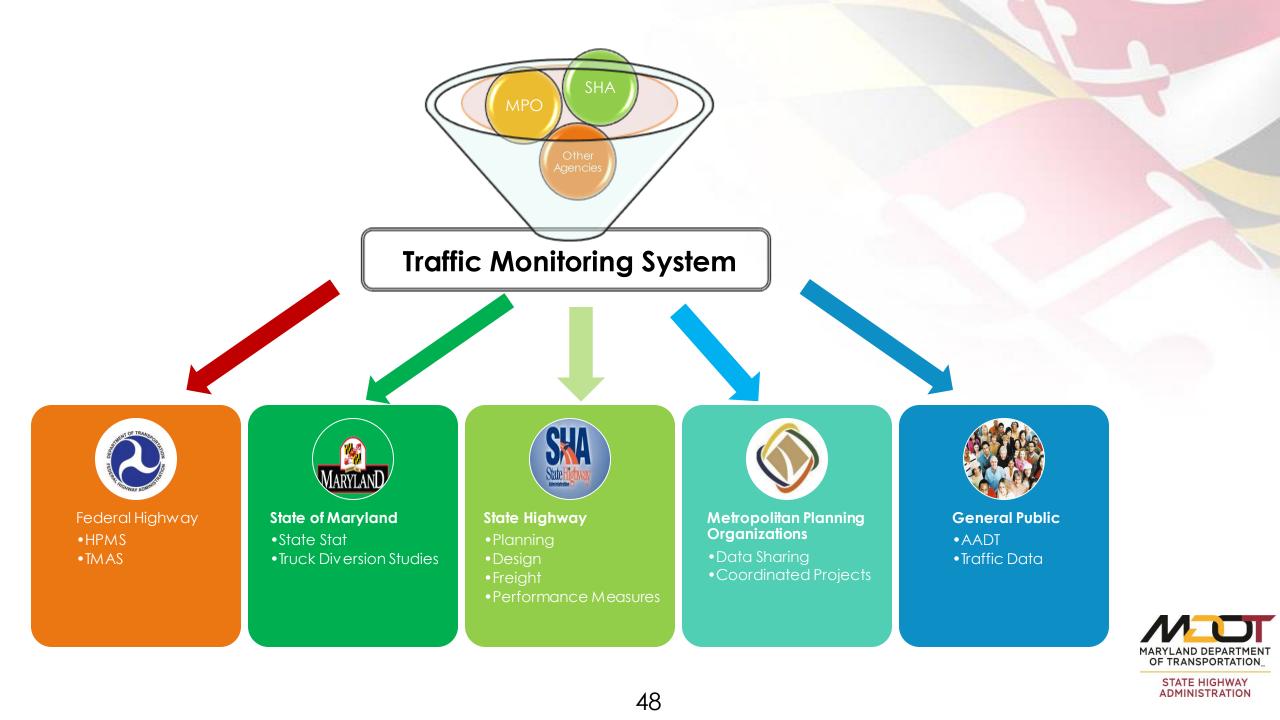
MSTM REPORTING WITH POWER BI

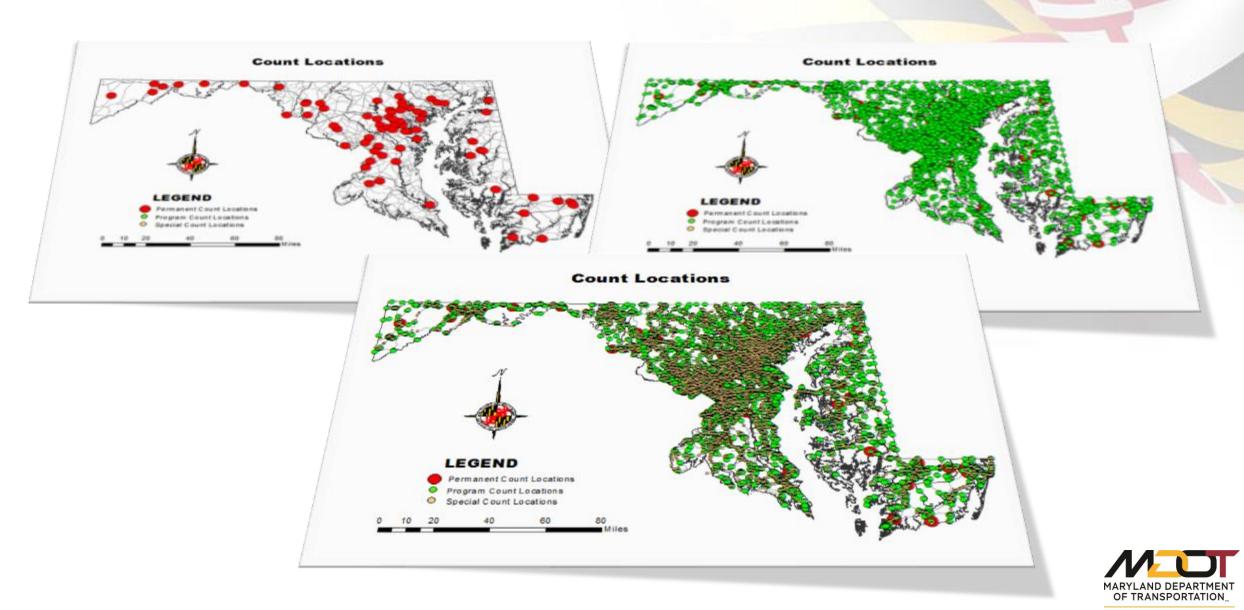

- Current efforts are looking at enhancing model data visualization and analysis using Power BI
 - Current model reports are either text-based or incorporate graphs generated by R
 - Power BI provides tools for data visualization and analysis that are relatively easy to set up
 - Dynamic interactions between visualizations allow the user to quickly focus in on interesting data elements
 - Part of Microsoft suite of products, so is highly accessible to Microsoft users


VHT24 by SWFT

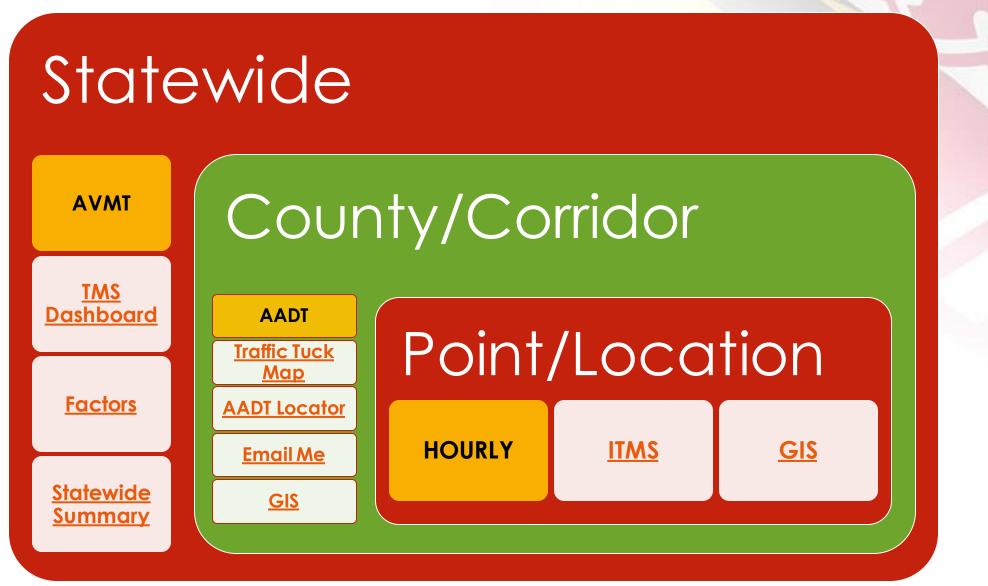
Counties, State	VMT24
Allegany, Maryland	2,541,436.8
Anne Arundel, Maryland	19,024,680.2
Baltimore City, Maryland	11,243,865.9
Baltimore County, Maryland	25,678,635.2
Baltimore, Maryland	25,678,635.2
Calvert, Maryland	2,800,583.8
Caroline, Maryland	1,395,060.2
Carroll, Maryland	4,985,656.5
Cecil, Maryland	4,521,698.1
Charles, Maryland	4,598,746.0
Dorchester, Maryland	1,222,999.3
Frederick, Maryland	10,433,957.2
Garrett, Maryland	2,069,341.2
Harford, Maryland	7,712,192.8
Howard, Maryland	12,453,741.3
Kent, Maryland	766,157.2
Montgomery, Maryland	23,952,731.0
Prince George's, Maryland	25,711,609.5
Queen Annes, Maryland	2,746,219.4
Queen Anne's, Maryland	2,746,219.4
Somerset, Maryland	1,169,556.3
St Marys, Maryland	3,676,177.3
St. Mary's, Maryland	3,676,177.3
Talbot, Maryland	2,031,994.6
Washington, Maryland	6,283,317.3
Wicomico, Maryland	3,504,576.9
Worcester, Maryland	2,369,898.7
	182,894,833.9

<


>



MDOT-SHA TRAFFIC MONITORING SYSTEM (TMS)



STATE HIGHWAY ADMINISTRATION

STATE HIGHWAY ADMINISTRATION

https://www.roads.maryland.gov/mdotsha/pages/index.aspx?PageId=251

STATE HIGHWAY ADMINISTRATION

50