
An on-line tool for TMDL Action Plans

VASTTOOL.ORG CASTTOOL.ORG MASTONLINE.ORG

Olivia Devereux Devereux Environmental Consulting olivia@devereuxconsulting.com

Outline

- TMDL Planning and Assessment
- VAST Features for Action Plans
- VAST Demonstration
- Consistency with Bay TMDL
- VAST Validation
- Current Users
- Use of VAST in Planning and Assessment
- Future Refinements
- Why VAST?

TMDL Planning and Assessment

- Establish an action plan with measurable goals
 - Best management practices and land use
 - Quantify the load reduction
 - Cost effective and efficient
- Planning, tracking, and reporting for compliance
 - Provide the tools necessary to change plans
 - Interim benchmarks (milestones)
- Process
 - Adaptive and iterative
 - Facilitates a coordinated team

VAST Features for TMDL Planning and Assessment

Is Replicable , Consistent, and Transparent
– Consistent with the TMDL model

• Serves as a data management system

- Can accommodate many simultaneous users
 - Online with private log in
 - Private and public scenarios
 - Users can share scenarios with other specified users (access control)
 - County scenarios can be merged for the entire state

VAST Demonstration

WWW.CASTTOOL.ORG WWW.MASTONLINE.ORG

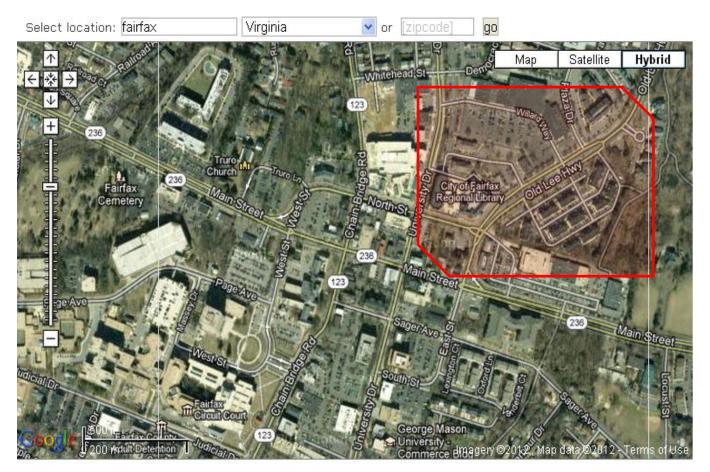
WWW.VASTTOOL.ORG

Consistency with the Bay TMDL

- Based on the same model that was used to determine the TMDL and the allocations.
 VAST has internal consistency for loads, geographical scale and sectors
- Other available tools have assumptions that may be different from those used in developing the current TMDL

Validation Using 2009 Progress

	+/- 10% of Watershed			
		Model Output by land use		
		and FIPS		
	Acres per LU	99.82%		
	TN EOS	95.68%		
	TP EOS	97.94%		
	TSS EOS	99.93%		
Most of the error is on agricultural land				
uses. Urban land uses match within +/- 1%.				


	GROUP	USERS
VAST		408
MAST		298
CAST:	Virginia	107
	West Virginia	86
	Pennsylvania	93
	Maryland	105
	District of Columbia	78
	New York	70
	Delaware	67

Use of Vast in TMDL Planning and Assessment

- Chesapeake Bay TMDL Phase I and Phase II WIPs
 - Worked with multiple Region 3 jurisdictions
 - Identified BMPs that were most effective
 - Practices that convert land uses to a lower loading land use (buffers)
 - Urban infiltration practices-reduction of 85%-N and P, 95%-Sediment
 - Bioswale-reduction of 70%-N, 75%-P, and 80%-Sediment
 - Bioretention-reduction of 75%-N, 70%-P and, 80%-Sediment
 - Stream restoration (new)-reduction of 0.2 lbs/ft-N, 0.068 lbs/ft-P and, 310 lbs/ft-Sediment
 - Quantify the impacts of various management actions
 - Improve local management decisions
 - Allow involvement of a broad team

Future Refinements

- BMP costs—CBP costs and user-defined
- Delineate geographic area of scenario

Why VAST?

- Replicable, consistent, transparent
- Consistent with EPA Watershed Model Phase 5.3.2 and WIP Phase II
- Calculates all BMPs identically to CBP (except for Ag loads)
- No average delivery factor—the delivery factor is for each segment, like the Watershed Model
- Compares among scenarios and with TMDL allocations (where state provides)
- Facilitates an iterative process to determine if TMDL allocations are met
- Allows involvement of all departments and local planners in the Action Plan
- Quantifies the impacts of various management actions
- Builds load reduction strategies (by local area), improves local management decisions

QUESTIONS?

We encourage you to test the tool at: <u>www.casttool.org</u> <u>www.vasttool.org</u> <u>www.mastonline.org</u>