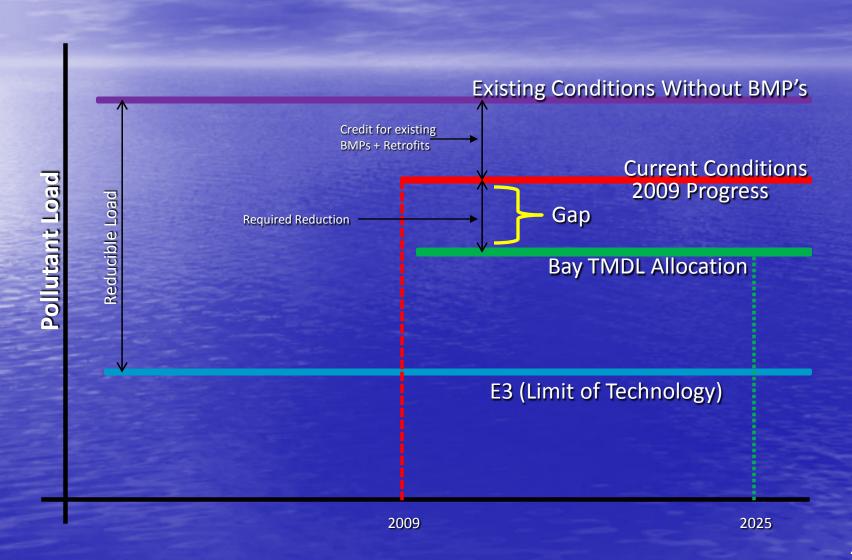
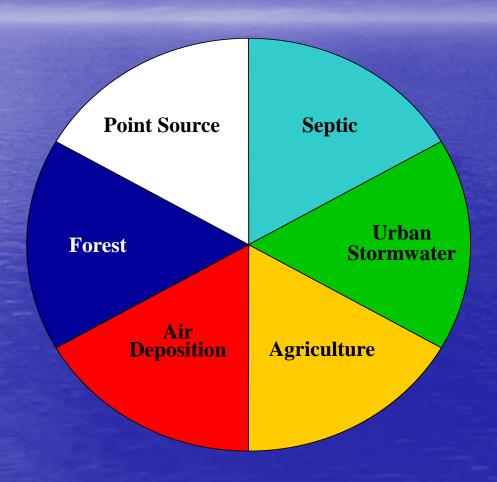
Metropolitan Washington Council of Governments

Anne Arundel County Draft Phase II
Watershed Implementation Plan
January 18, 2011


Chesapeake Bay TMDL Pollutants of Concern

Nitrogen


Phosphorus

Sediment

TMDL Allocation and Gap Determination

Maryland Department of Environment Allocation of Existing Load by Source Category to Anne Arundel County

Anne Arundel County Pollutant Load Allocations

Total Nitrogen									
A	Final Target Load								
Source Sector	2020 Final Target Load	% of Total Load	% Reduction of Reducible Load	% Reduction from 2009 Progress					
Urban	500,778	21%	36%	22%					
Agriculture	141,996	6%	41%	34%					
Septic	314,602	13%	46%	45%					
Forest	286,450	12%	-1%	0%					
Air	18,447	1%	2%	1%					
Major Municipal WWTP	733,843	31%							
Minor Municipal WWTP	23,337	1%							
Major Industrial WWTP	244,882	10%							
Minor Industrial WWTP	61,639	3%							
Federal <mark>Major M</mark> un <mark>icip</mark> al WWTP	67,002	3%							
Total	2,392,976								
Total Phosphorus									

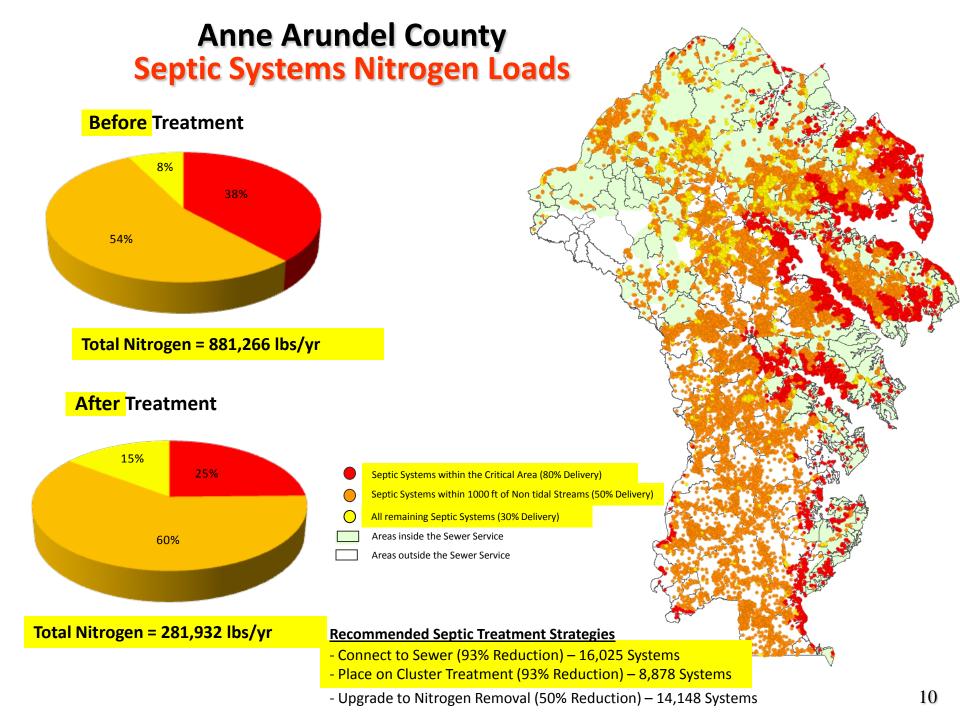
	Final Target Load						
Source Sector	2020 Final Target Load	% of Total Load	% Reduction of Reducible Load	% Reduction from 2009 Progress			
Urban	60,403	36%	50%	38%			
Agriculture	20,168	12%	29%	24%			
Forest	18,267	11%	0%	0%			
Air	1,107	1%	3%	2%			
Major Municipal	54,490	32%					
Minor Municipal	3,887	2%					
Major Industrial	3,678	2%					
Minor Industrial	2,790	2%					
Federal Major Municipal	5,025	3%					
Total	169,815						
	-	•	-	-			

Anne Arundel County TMDL Edge of Stream (EOS) Nitrogen Loads and Allocations by Source Sector

	Tot	tal Nitrogen Load (lbs	s/year)		Maximum Nitrogan Im		
Source Sector	Existing (3)	Proposed WIP Reductions (lbs/year)	With Proposed draft WIP	EOS Target Load (1)	Maximum Nitrogen Reducible Load (lbs/year)	100% of Maximum Reducible Load	
		Anne Arundel	County Governme	ent			
County WWRFs (Major Municipals)	448,123	-122,250	570,372	570,372 (5)	-122,250		
Septic	881,266 (9)	323,223	558,043	558,043 ⁽⁹⁾	599,334		
Urban Storm Water	737,516	223,560	51 3,956	444,582 (7)	TBD	TBD	
County Natural Lands	153,937	0	153,93 7	153,937	0		
Sub-total Sub-total	2,220,842	Work in Progress	TBD	1,726,934	TBD		
		Non Anne Arung	del County Governi	ment			
Major Industrial	303,091	Work in Progress	TBD	244,882 (6)	TBD		
Minor Municipal	21,602	Work in Progress	TBD	37,956 (6)	TBD		
Minor Industrial	80,992	Work in Progress	TBD	61,639 (6)	TBD		
Federal Municipal	16,528	Work in Progress	TBD	67,002 (6)	TBD		
Federal Urban Stormwater	29,776 (4)	Work in Progress	TBD	16,437 (7)	TBD		
State Urban Stormwater	90,006	Work in Progress	TBD	24,479 (7)	TBD		
City of Annapolis Urban Stormwater	43,389	Work in Progress	TBD	10,651 (7)	TBD		
Agriculture Lands (USDA/MDA/SCD)	244,009	Work in Progress	TBD	141,996 (8)	TBD		
Other Natural Lands	42,554	0	42,554	42,554	0		
Atmospheric Deposition	18,447	0	18,447	18,447	0		
Sub-total (6)	890,394	Work in Progress	TBD	666,042	TBD	TBD	
TOTAL	3,111,235	Work in Progress	TBD	2,392,976	TBD	TBD	
Bay TMDL Cap				2,392,976 (2)			


^{*}Last updated on January 12, 2011, version 4, developed by Hala Flores, P.E. Reviewed by Ginger Ellis and Ronald Bowen.

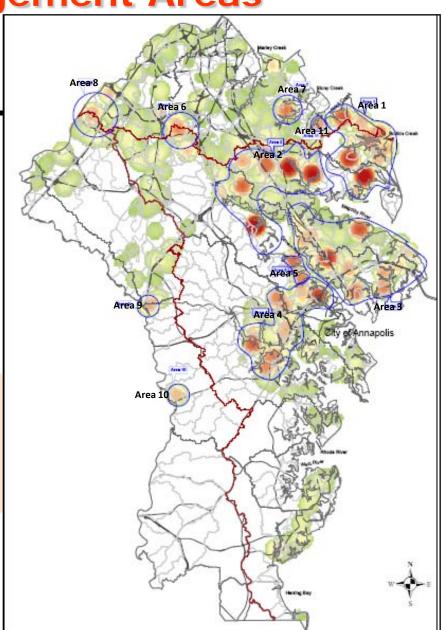
- (1) Draft Anne Arundel County Source Sector target allocations (subject to change).
- (2) Total Anne Arundel County Base TMDL Cap (Based on MDE draft allocation Dec 29, 2010).
- (3) Existing 2009 Load based on 2007 aerial photography and delineation of landcovers. Source Sector estimates are without existing BMPs.
- (4) Federal load is based on 2007 landcover condition and does not account for extensive development of existing open space due to BRAC.
- (5) Target load based on ENR load cap.
- (6) Target load based on current permitted cap.
- (7) Target load based on statistical correlation to achieve fair condition biological health. (Based on TN = 2.7 lbs/Acre and TP = 0.38 lbs/Acre)
- (8) Target load based on MDE draft allocation.
- (9) Utilizes MDE TN delivery ratios based on proximity to critical area and 1,000 ft. of non-tidal streams.


Point Source Water Reclamation Facilities

Enhanced Nutrient Removal Upgrades

\$270,000,000

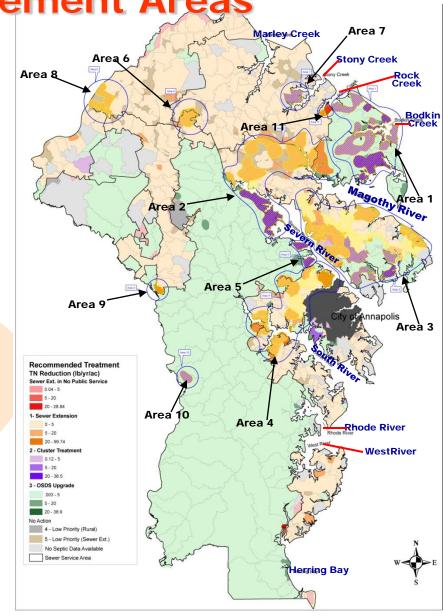
Septic Systems Challenge to Reduce Pollutant Loads What will be our strategy?


Septic System Strategic Plan

Proposed Alternative Solutions Public Sewer Extension Cluster Treatment Systems OSDS Nitrogen Reduction Units Low Priority Areas Not Applicable

WIP Septic Load Reduction Targeted Management Areas

Recommended Treatment Alternative


_	Area#	#OSDS	Treatment Type	SSA	Watershed
	1	4,644	Cluster	Rural	Bodkin/Magothy/Patapsco Tidal
	2	6,925	Sewer Extension	Broadneck	Magothy/Severn
	3	3,849	Sewer Extension	Broadneck	Magothy/Severn
	4	2,545	Sewer Extension	Annapolis	Severn/South
	5	617	Cluster	Rural	Severn
	6	626	Sewer Extension	Broadneck	Severn/Patapsco Tidal
	7	147	Sewer Extension	Cox Creek	Patapsco Tidal
	8	305	Sewer Extension	Baltimore City	Little Patuxent/Patapsco Non-Tidal
	9	61	Sewer Extension	Patuxent	Upper Patuxent
	10	281	Cluster	Rural	Upper Patuxent
	11	233	Sewer Extension	Cox Creek	Patapsco Tidal
	Total	20,233			

WIP Septic Load Reduction Targeted Management Areas

Potential TN Load Reduction

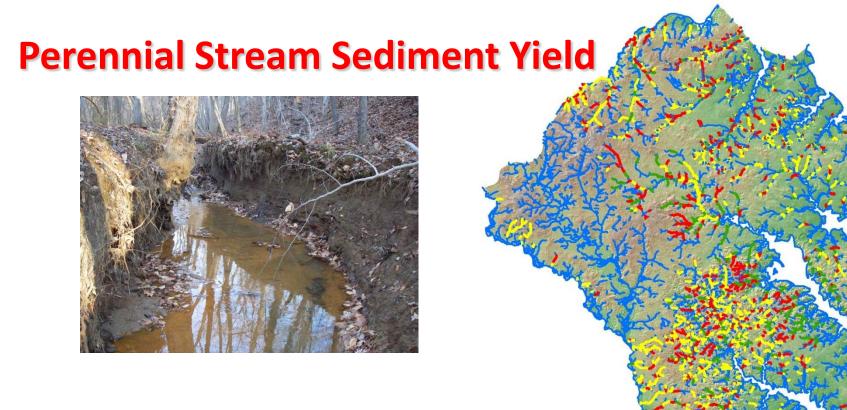
		Load after							
		Existing TN	Treatment at	TN Lbs					
Area #	# OSDS	Load	4 mg/L	Removed					
1	4,644	85,733	13,129	72,604					
2	6,925	119,349	20,135	99,214					
3	3,849	75,030	12,129	62,901					
4	2,545	62,135	10,303	51,832					
5	617	12,967	1,639	11,328					
6	626	5,710	1,595	4,115					
7	147	6,829	1,151	5,678					
8	305	5,972	1,193	4,779					
9	61	4,830	967	3,863					
10	281	3,716	772	2,944					
11	233	4,958	628	4,330					
Totals	20,233	387,229	63,640	323,589					

WIP Septic Load Reduction Targeted Management Areas

	#	Existing TN	Treatment	TN Lbs					
Area #	OSDS	Load	at 4 mg/L	Removed	Treatment Type	SSA	Watershed	Cost Per unit	Cost
1	4,644	85,733	13,129	72,604	Cluster	Rural	Bodkin/Magothy/Patapsco Tidal	\$36,203.00	\$168,126,732.00
2	6,925	119,349	20,135	99,214	Sewer Extension	Broadneck	Magothy/Severn	\$38,000.00	\$263,150,000.00
3	3,849	75,030	12,129	62,901	Sewer Extension	Broadneck	Magothy/Severn	\$38,000.00	\$146,262,000.00
4	2,545	62,135	10,303	51,832	Sewer Extension	Annapolis	Severn/South	\$38,000.00	\$96,710,000.00
5	617	12,967	1,639	11,328	Cluster	Rural	Severn	\$36,203.00	\$22,337,251.00
6	626	5,710	1,595	4,115	Sewer Extension	Broadneck	Severn/Patapsco Tidal	\$38,000.00	\$23,788,000.00
7	147	6,829	1,151	5,678	Sewer Extension	Cox Creek	Patapsco Tidal	\$38,000.00	\$5,586,000.00
8	305	5,972	1,193	4,779	Sewer Extension	Balto City	Little Patuxent/Patapsco Non-Tidal	\$38,000.00	\$11,590,000.00
9	61	4,830	967	3,863	Sewer Extension	Patuxent	Upper Patuxent	\$38,000.00	\$2,318,000.00
10	281	3,716	772	2,944	Cluster	Rural	Upper Patuxent	\$36,203.00	\$10,173,043.00
11	233	4,958	628	4,330	Sewer Extension	Cox Creek	Patapsco Tidal	\$38,000.00	\$8,854,000.00

Totals

20,233


387,229

323,589

63,640

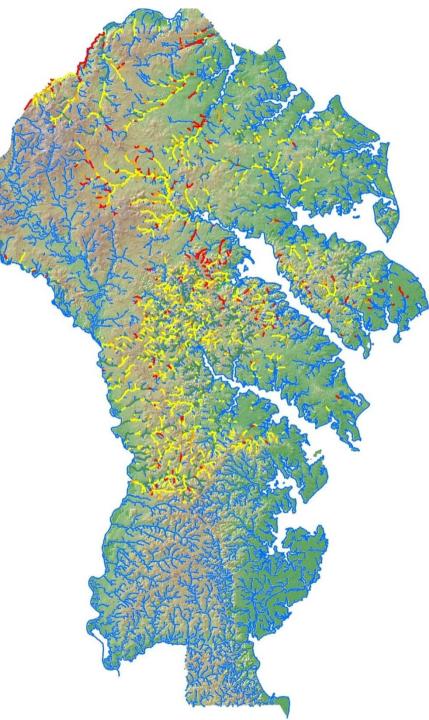
Urban Stormwater Challenge to Reduce Pollutant Loads What will be our strategy?

Stream erosion is the major source of sediment transported to our tidal waterways.

Assessed Perennial Stream Miles = 410

Sediment Yield	<u>Miles</u>
—— High	134
Moderate	210
Low	66

Physical Habitat Quality



Severely degraded habitat quality

Minimally degraded habitat quality

Assessed Perennial Stream Miles = 410

Habitat Quality	<u>Miles</u>
— Severely Degraded	218
— Degraded	16
— Partially Degraded	102
— Minimally Degraded	74
— Not Assessed To-Date	

Anne Arundel County

Perennial Streams Biological Condition

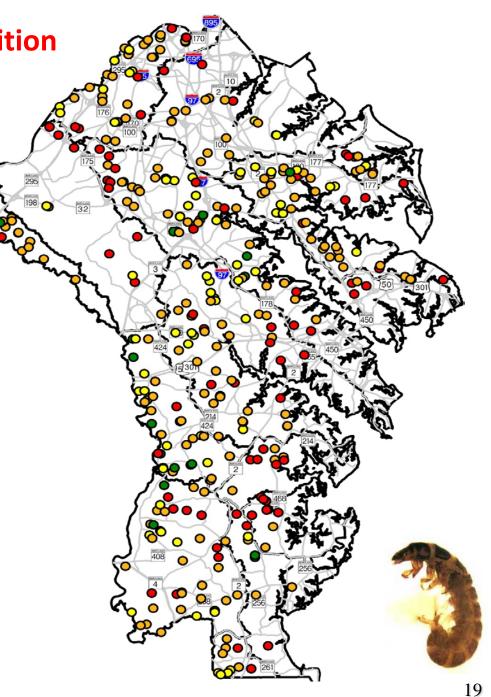
Benthic Index for Biotic Integrity (BIBI) Score

Number of Samples - 376

■ Good

- 5%

Fair


- 23%

Poor

- 49%

Very Poor

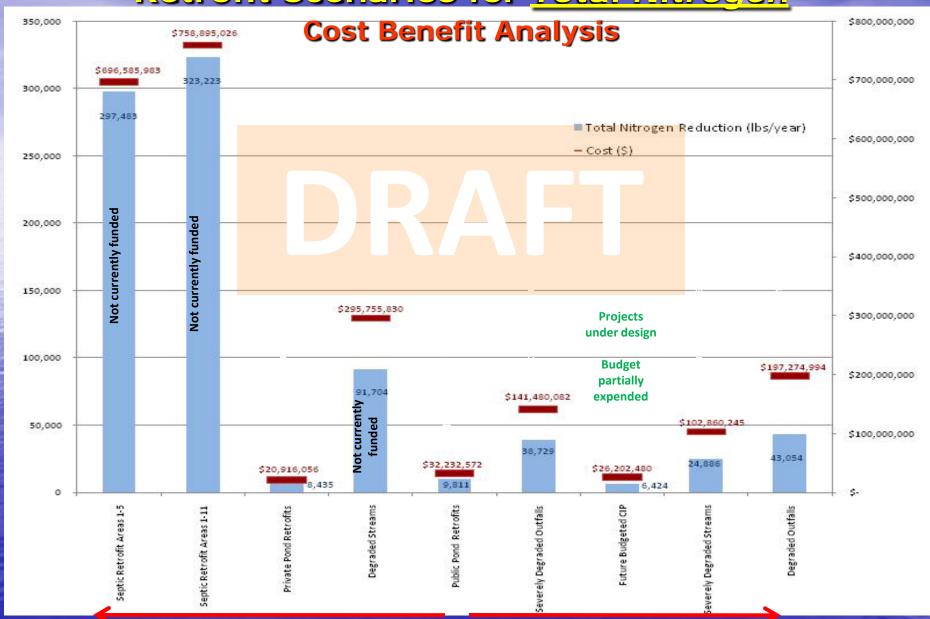
- 23%

Degraded Stream Conditions

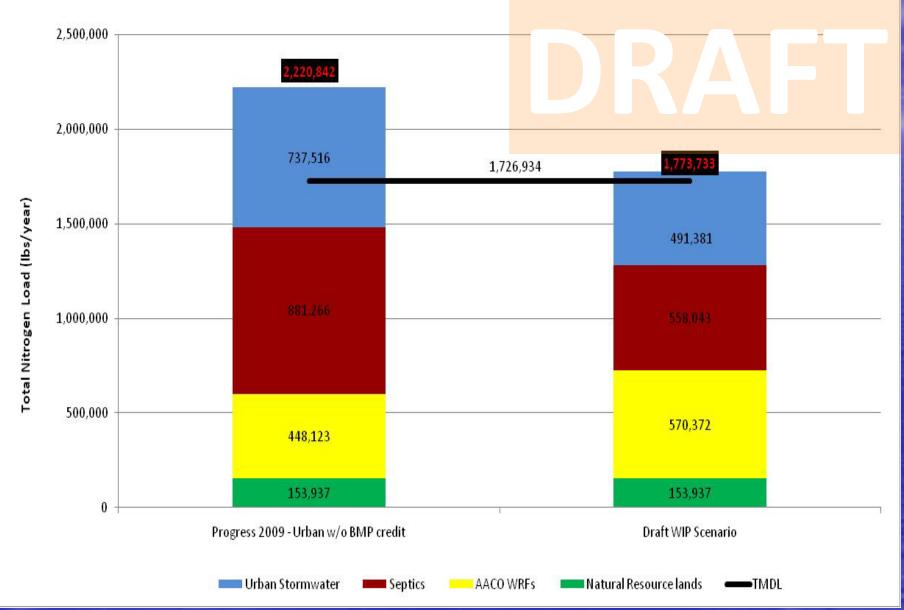
Dynamics of Erosion of Headwater Streams

- Incised Channels
- Accelerated Sediment Transport
- Phosphorus Contribution
- Lost Groundwater Hydrology
- Loss of Floodplain / Wetland Functions

Step Pool Stormwater Conveyance (SPSC) Restoration Strategy


Stormwater Edge of Stream Core Implementation Strategy

- Stream Channel Restoration
- Ephemeral Channel Restoration
- Stormwater Outfall Restoration
- Stormwater Pond Restoration


Draft Urban Stormwater Retrofit Scenarios Anticipated Pollutant Reduction and Cost

						Pollutant Reduction					
				Total Contributary	Impervious Acres	TN	TP	TSS	Preliminary Cost		
Retrofit Type	Quantity	Units	Description	Drainage Acres	Retrofit	(lbs/year)	(lbs/year)	(Tons/year)	(\$)	TN Cost/lb	TP Cost/lb
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- Community		Retrofit of all extended			()	()	(cone, year)	(+)		
			detention private ponds								
Private Pond Retrofits	101	# of Ponds	approved prior to 2002.	2,189	996	8,435	1,597	185	\$ 21,926,272	2599	13,734
			Retrofit of all extended			-,	,		, ,, ,,		-,-
			detention public ponds								
Public Pond Retrofits	92	# of Ponds	approved prior to 2002.	3,374	1,012	9,811	1,799	198	\$ 33,789,361	3444	18,787
				·		,	,				,
			This scenario quantifies the								
			benefits of implementing								
			future CIP restorations with								
Future Budgeted CIP	35	Projects	approved budget	2,172	759	6,940	1,277	140	\$ 26,202,480	3776	20,515
			Retrofit of degraded								
			channels based on physical								
Degraded Streams	70	Miles	habitat assessment	47,194	8,109	91,704	18,021	2,443	\$ 382,093,567	4167	21,203
			Retrofit of severely								
			degraded channels based								
			on physical habitat								
Severely Degraded Streams	24	Miles	assessment	13,303	2,204	24,886	4,922	660	\$ 107,703,198	4328	21,881
			Retrofit of outfalls within								
			the 1st quartile								
			subwatersheds ranked for								
			restoration using filtering								
Severely Degraded Outfalls	927	# of Outfalls	BMP (SPSC system).	10,661	4,249	38,729	7,120	796	\$ 176,521,853	4558	24,793
			Retrofit of outfalls within								
			the 2nd quartile								
			subwatersheds ranked for								
			restoration using filtering								
Degraded Outfalls	997	# of Outfalls	BMP (SPSC system).	14,866	4,401	43,054	7,962	875	\$ 246,136,043	5717	30,914
			This scenario quantifies the								
			benefit for CIP restorations								
Canadata d Buail d	140	Dun' '	performed since 2002 and	4.460	4 227	10.424	45.000	40.550	D1/0	N/A	N/4
Completed Projects	149	Projects	up to 2009	4,463	1,337	10,421	15,698	19,558	N/A	N/A	N/A
	To	tal		93,760	21,731	223,560	42,697	5,297	\$ 994,372,774	N	/A

Proposed Urban Stormwater and Septic Retrofit Scenarios for *Total Nitrogen*

Nitrogen TMDL and Watershed Implementation Plan

Ultimate Goals

- Restored Stream Stability
- Restored Hydrology within Floodplains & Streams
- Restored Biological Health of Streams
- Compliance with Water Quality Standards

What is the Potential Cost to Anne Arundel County

Point Source

\$270,000,000

Septic

\$758,900,000

Urban Stormwater

\$994,400,000

\$2,023,300,000

Disclaimer

The information in this presentation is "DRAFT" work in progress. It is fully anticipated that the defined Anne Arundel County load allocation will change as well as the draft target loads for individual source sectors. These changes once implemented by regulatory agencies will have corresponding impacts on projected existing loads, strategies for load reduction and associated cost estimates.

Current cost estimates are raw costs based on present time value of money. The estimates do not reflect the cost impacts associated with timing of the capital investments/improvements over the duration of the implementation schedule.

We hope the information presented provides valuable insight into the complexity and magnitude of what will be required to pursue compliance with the Chesapeake Bay TMDL allocation as well as local watershed TMDL's.