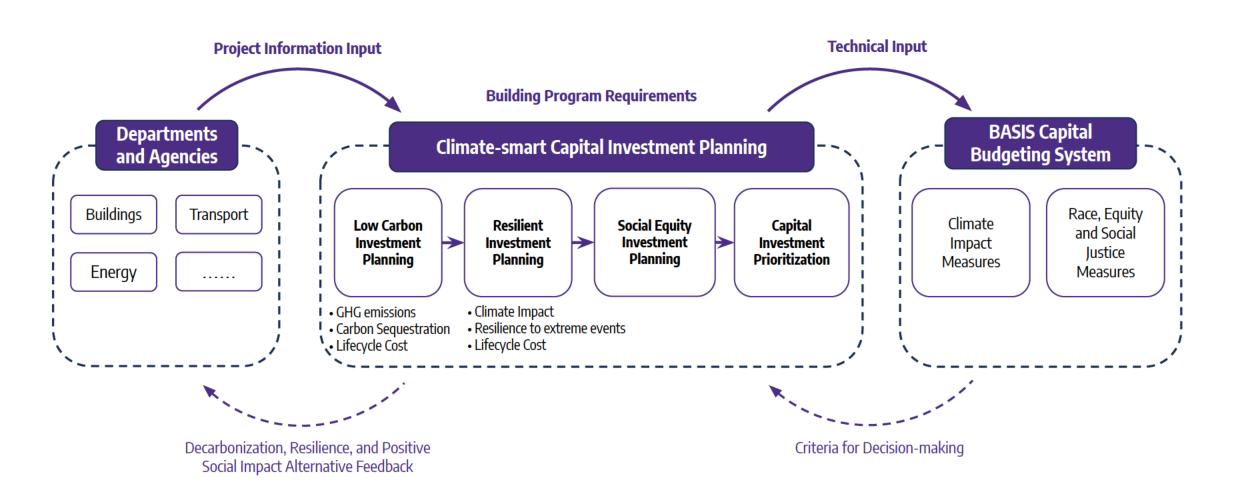
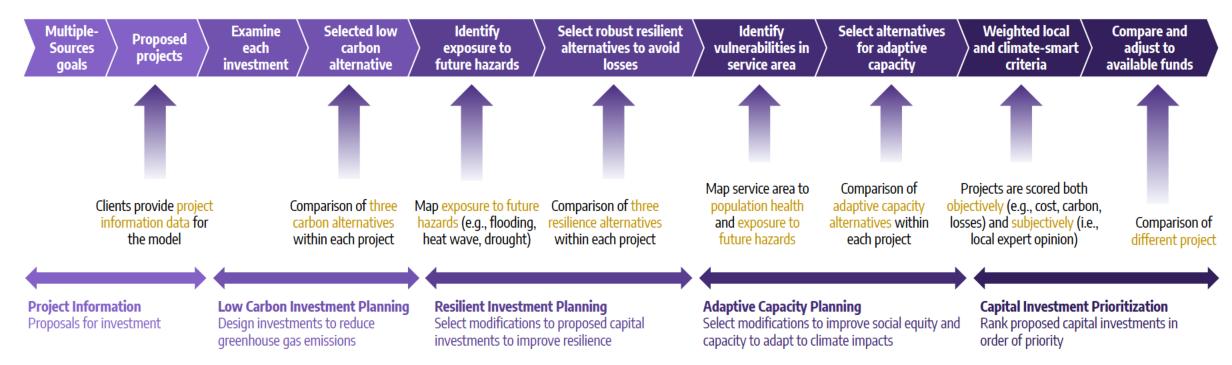
Contact Dr. Whittington: janwhit@uw.edu
Learn about Climate Solutions International: https://climatesolutionsintl.com/home
Visit the UW Urban Infrastructure Lab: https://uil.be.uw.edu/

Capital Investment Planning and Climate Budgeting for Clean Energy and Low Carbon Infrastructure Projects

Prepared in collaboration with Montgomery County, Maryland


Dr. Jan Whittington Urban Infrastructure Lab, University of Washington **Dr. Adrienne Greve** Cal Poly San Luis Obispo

April 18, 2024


Outline

- 1. Climate-smart Capital Investment Planning
- 2. Montgomery County, MD application of Climate-smart CIP (XLS)
- 3. Measures and outputs
 - a. Decarbonization
 - b. Resilience
 - c. Social Equity
- 4. Reporting at the project, program, and county level
- Climate bond certification
- 6. Results from global field-tests of Climate-smart CIP
- 7. Intro to Climate Solutions International (XLS + online application)

Integrating Climate Measures with the Capital Investment Plan

The Process of Climate-Smart Capital Investment Planning

^{*} We remove the Capital Investment Funding Allocation phase for the diagram

Quantitative Indicators

Decarbonization

Compare projects for:

Scale efficiencies

GHG intensity of energy sources

GHG emissions

Carbon Sequestration

Capital cost

Lifecycle cost

Resilience

Compare projects for:

Capital cost

Lifecycle cost

Vulnerability to extreme events

over the lifecycle:

Cost of extreme events

Cost of design strategies

Losses avoided

Suggested capital reserves

Resilience dividend

Social Impact

Forecast effects on:

Local Employment

Climate Science Categories

Exposure

Sensitivity

Adaptive capacity

May be categorized as:

Level of service goals

Community benefits

Environmental justice goals

Social equity goals

Workflow is a series of modules

Decarbonization

Energy/Tech Performance Select from Families of Technologies

Select Energy Sources Energy Savings

Lifecycle Costs

Net CO₂e Emissions

Capital Projects

Project:
Scale
Scope
ROM Cost Estimate
Location
Service Area

Resilience

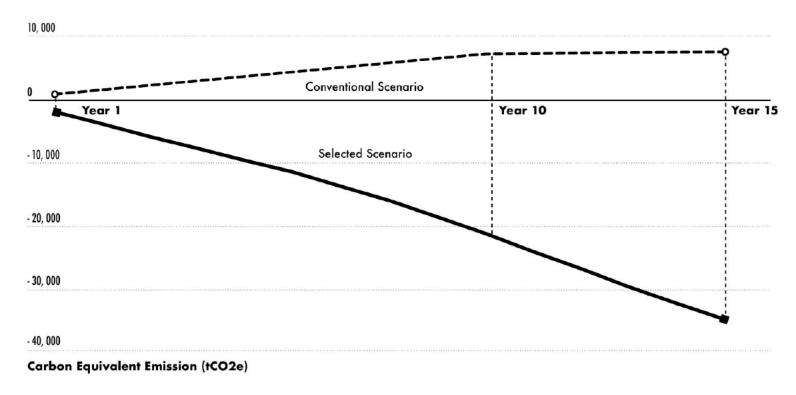
Exposure to Climate Impact Project Components and Services

Select Alternative Site Designs and Locations Loss and Damage Forecast

> Modified Cost Estimates

Capital Reserves

Social Equity


Social Vulnerability Identify target populations

Select mitigating project designs and features Lifecycle Costs

Social Vulnerability

Mitigated Disparities

Low Carbon - Impact of the Capital Budget on GHG Emissions

Example Figure - Cumulative Greenhouse Gas Emissions in the Capital Budget

Cumulative GHG Emissions

One in a series of charts to show how Climate-smart selections contribute to the energy efficiency, getting to net zero greenhouse gas emissions, resilience to climate impacts, and equity in the capacity to adapt to climate change.

Low Carbon - **Project alternatives**

Local engineers select alternative tech:

- Business as usual
- Low Carbon
- Carbon Zero

Pre-loaded with localized data

- Emissions
- Energy sources
- Energy demand
- Capital cost
- Operation and maintenance cost

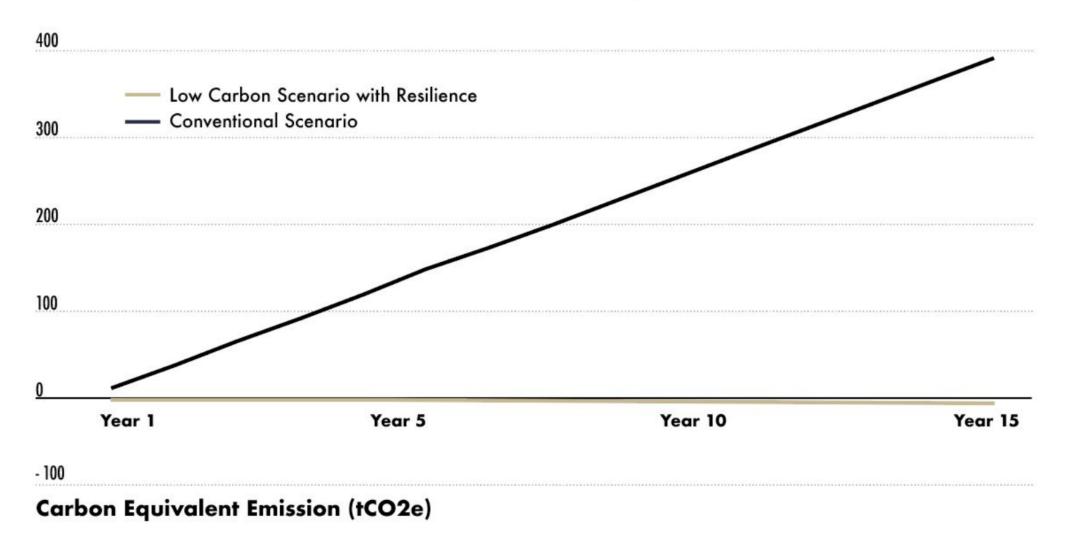
				D				
				Project 1				
			Oceanside Plant Digesto Utilization Upgrad					
Criteria	Unit	Indicator	Conventional	Low Carbon	Carbon Zero			
Scale	Percent	Proportion of conventional	1.00	1.00	1.00			
	Percent	Percent scale of conventional	100%	100%	100%			
	M2 or Count	Square meters of conditioned space or count	20	20	20			
Energy Source	tCO2e/MWh	Carbon intensity of energy sources	0.44	0.28	-			
	Percent	Percent tCO₂e per MWh of conventional	100%	64%	0%			
Energy Savings	MWh/year	Energy intensity	642	230	L -			
and Sequestration	Percent	Percent annual tCO2e of conventional	100%	35%	0%			
	Years	Period of lifecycle	20	20	20			
	tCO2e/lifecycle	Lifecycle emissions without sequestration	5,686	1,305	-			
	tCO2e/lifecycle	Life-cycle carbon sequestration (at plant maturity)	512	1,726	3,454			
	tCO2e/lifecycle	Net lifecycle carbon equivalent emissions	5,174	(421)	(3,454			
Capital Cost	Percent	Percent capital cost of conventional	100%	93%	98%			
	Million	Capital Cost	15	14	14			
Life-cycle Cost	Percent	Percent life-cycle cost of conventional	100%	73%	90%			
	Years	Lifecycle (Years)	20	20	20			
	Million/lifecycle	Lifecycle Operation and Maintenance Cost	17	16	16			
	Million/lifecycle	Lifecycle Major Maintenance Cost	21	8	17			
	Million/lifecycle	Lifecycle Cost	52	38	47			

Low Carbon - **Project alternatives**

Local engineers select alternative tech and designs:

- Business as usual
- Low Carbon
- Carbon Zero

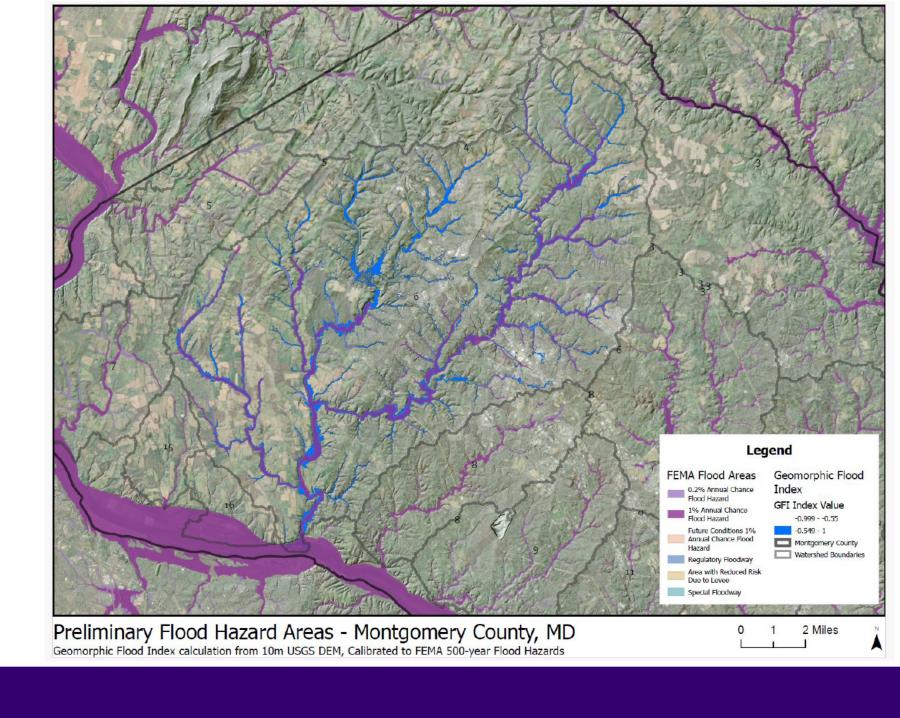
Pre-loaded with localized data


- Emissions
- Energy sources
- Energy demand
- Capital cost
- Operation and maintenance cost

Wastewater Treatmen	t			Project 2					
			to 20 MLD STP as per CPHEEO,	ejuvenation of e to meet effluen MoHUA, MoEF, lelines (At RL Na	t pararmeters CPCB and NGT				
Scale		Units	Conventional	Low Carbon	Carbon Zero				
Total Area		m2	13600	13600	13600				
Percentage of Sewer System >20 Year	s Old (I/I)	Percentage	30	30	30				
Wastewater Flow - Dry Season		MGD	4	4	4				
Wastewater Flow - Wet Season		MGD	4.8	4.8	4.8				
Percent of sludge produced per year	as compai	Percent by dry weight	80%	80%	80%				
Percent of sludge produced that's dig	ested for	Percent by dry weight	80%	80%	80%				
Conventional Treatment - Treatment	for BOD (Only (not for Nitrogen), & Biogas							
Production Treatment									
Tertiary Treatment -	Energy								
Cogeneration/Pipeline Injection	Use per								
Cogeneration Engine - Biogas	276	Total Number of units possible	1	1	1				
Consumption	390	Selected Number of Units		0.0815	0.0815				
		Total Carbon Emitted (tCO2e)	0	23	23				
(per 45,000 gpm capacity)		Total Biogas Use (MWhe)	0	32	32				
Cogeneration Engine - Natural	276	Total Number of units possible	1	1	1				
Gas Consumption	390	Selected Number of Units	0.0815	0.0815					
		Total Carbon Emitted (tCO2e)	23	23	0				
(per 45,000 gpm capacity)		Total Natural Gas Use (MWhe)	32	32	0				
Cogeneration Engine - Energy	634	Total Number of units possible	1	1	1				
Generation	-1170	Selected Number of Units		0.0815	0.0815				
		Total Carbon Sequestered	0	52	52				
(per 45,000 gpm capacity)		Total Biogas Produced (MWhe)	0	-95	-95				
Biogas Flare - Biogas Consumption	354	Total Number of units possible	1	1	1				
(per 45,000 gpm capacity)	500	Selected Number of Units	0.0815						
(per 45,000 gpin capacity)		Total Carbon Emitted (tCO2e)	29	0	0				
		Total Biogas Use (MWhe)	41	0	0				
Biogas Flare - Energy Generation	407	Total Number of units possible	1	1	1				
(per 45,000 gpm capacity)	-500	Selected Number of Units		0.0815	0.0815				
(per 45)000 gpin capacity)		Total Carbon Sequestered	0	33	33				
		Total Biogas Produced (MWhe)	0	-41	-41				
		Subtotal Carbon Emitted (tCO2e)	51	45	23				
	Subt	otal Carbon Sequestered (tCO2e)	0	85	85				
	S	ubtotal Natural Gas Use (MWhe)	32	32	0				
		Subtotal Biogas Use (MWhe)	41	32	32				
	s	ubtotal Biogas Produced (MWhe)	0	-136	-136				

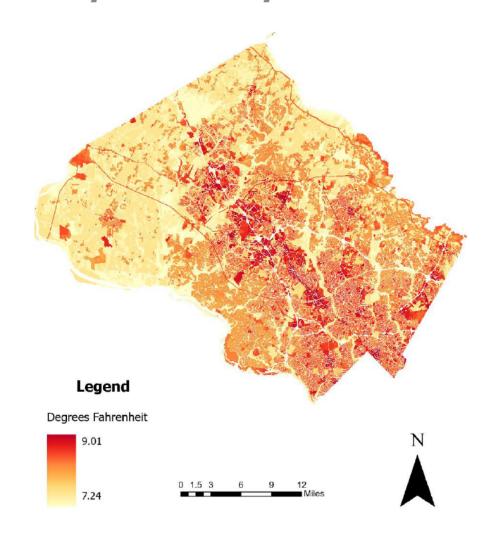
How it Works: Cost-effective designs to reduce GHG emissions

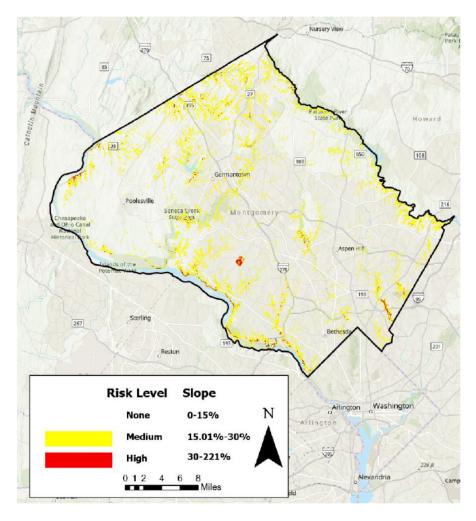
					Project 1		
Climate-Smart Criteria for Selection of Low Carbon Alternatives				Clarksburg	Library N	lo. 710500	
	Indicator		Weight of Criteria	Conventi onal score	Low Carbon score	Carbon Zero score	
Project minimizes GHG emissions through scale/density.	Percent scale of conventional	х	20	20.0	20.0	20.0	
2 Project reduces GHG emissions through energy sources.	Percent tCO2e per MWh of conventional	х	20	20.0	0.0	0.0	
Project minimizes GHG emissions through energy saving and carbon sequestration.	Percent annual tCO2e of conventional	х	20	20.0	0.0	0.0	
4 Project minimizes capital costs.	Percent capital cost of conventional	X	20	17.0	19.4	20.0	
5 Project minimizes life-cycle costs.	Percent life-cycle cost of conventional	X	20	18.4	20.0	20.0	
			100	95	59	60	
			Selected Alternative	Low Carbon			


Low Carbon - Impact of the Capital Budget on GHG Emissions

Resilience -Countywide Analysis

A technical report on the risk and resilience analysis of urban heat island, drought, flood, landslide, wildfire, severe storm and wind, earthquake, volcanic hazards, and more.


Preliminary Flood Hazard Analysis Montgomery County, MD



Resilience - Countywide Analysis

Preliminary Temperature Increase and Landslide 2100

Montgomery County, MD

Resilience -Project-level Analysis

Urban Heat Library Project Montgomery County, MD

Clarksburg Library
Temperature Increase
Degrees Fahrenheit
9.5
9.0

There is minimal urban heat hazard. Most temperature increases will come from warming temperatures as opposed to the urban heat island effect.

Resilience -Project-level Analysis

Flood Hazard Analysis Library Project Montgomery County, MD

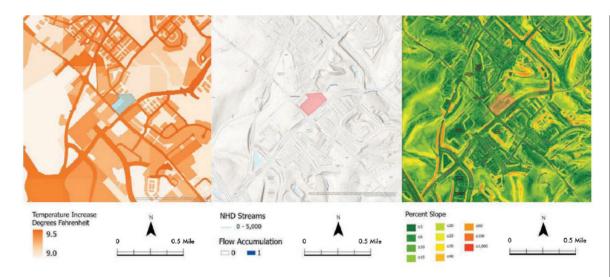
Resilience -Project-level Analysis

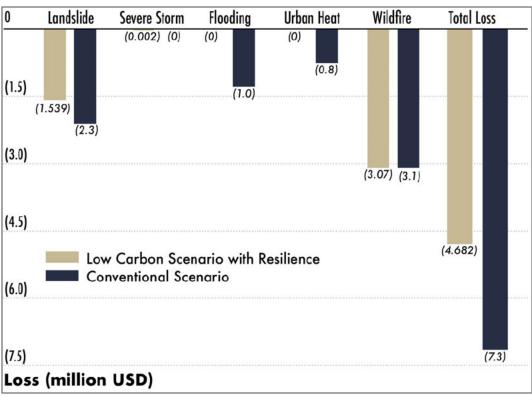
Landslide Hazard Analysis Library Project Montgomery County, MD

There is no landslide hazard as the site will be graded

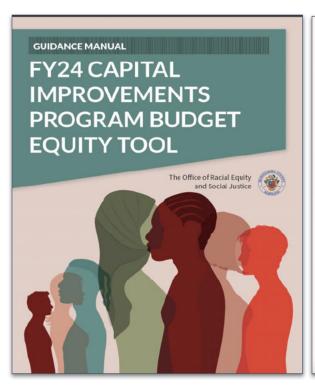
Resilience -Project alternatives

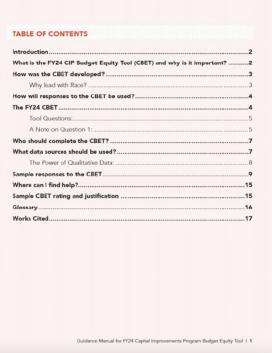
Local engineers select alternative designs:

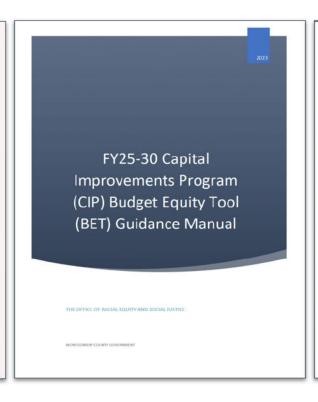

- Business as usual
- Moderately resilient
- Robust to all hazards


Pre-loaded with localized data

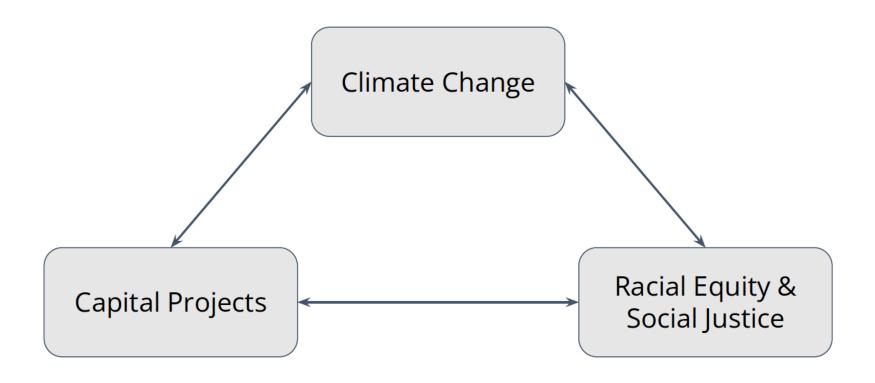
- Exposure to climate impact
- Lifespan of the capital investment
- Forecast of capital loss and damage
- Mitigating effects of design + location
- Resilience dividend
- Capital cost
- Operation and maintenance cost


				1			
			Oceanside Plant Digeste Utilization Upgrade				
)			
			Resilient	Resilient	Resi		
Category	Unit	Proportion of conventional	Convtl	Moderate	Rol		
Capital Cost	millions	Capital cost including expenses for resilience	14	14			
	Proportion	Percent capital cost compared to conventional (cost of facility)	98%	98%			
Life-cycle Cost	millions	Percent lifecycle cost compared to conventional (lifecycle cost of facility)	90%	90%			
	Years	Lifecycle (Years)	20	20			
	Million/year	Annual Operation and Maintenance Cost (including expenses for resilience)	1	1			
	Million/lifecycle	Life cycle cost (with low carbon and resilience modifications)	47	47			
Vulnerability to	As shown	All Plausible Extreme Events	5	5			
Extreme Events	Ratio	Rosenhead Robustness Factor	5	5			
	millions	Avoided cost from resilience (one occurrence of each extreme event)	-	2			
	Proportion	Percent cost from hazards compared to conventional (one occurrence)	100%	100%			
	millions	Total operation loss from hazards (one occurrence)	0	0			
	millions	Total capital loss from hazards (one occurrence)	17	17			
	millions	Capital reserves for CIP for resilience (one occurrence of each extreme event)	17	17			
Climate	Years	Frequency of occurrence in life-cycle (an illustration, not an estimate)	1	1			
Informed Cost	millions	Cost of hazards to conventional in life-cycle	17	17			
	millions	Cost of hazards to resilient alternative in life-cycle	17	17			
	millions	Avoided cost from resilience in life-cycle (all extreme events)	-	-			
	Proportion	Percent of life-cycle cost of hazards (all extreme events)	100%	100%			
	millions	Capital reserve to repair and continue operations (all extreme events)	17	17			
	millions	Lifecycle capital expenditure for resilience (all extreme events)	64	64			

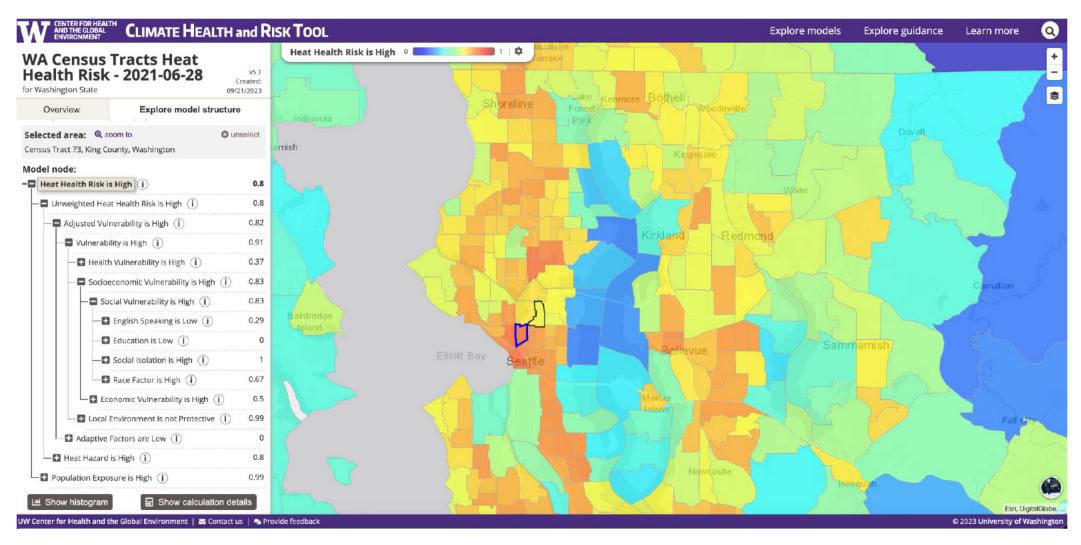

Resilience - Project-level Forecasts of Loss and Damage



Social Equity - CBET



Social Equity - CBET Scoring Rubric


CIP BET Rating Rubric: Rating Scale Rating Explanation **** The project strongly aligns with Montgomery County's policy to reduce and eliminate racial disparities and other inequities in that the response Strongly Aligns clearly demonstrates an ability to advance equitable outcomes for those with Montgomery identifying as BIPOC and/or low- income and includes at minimum all County's policy the following points as evidence to support this claim: to reduce and Historical context eliminate racial Current data disparities and · Community engagement strategy other inequities Supplemental research Consultation with those well-versed in topics of racial equity and social justice **** The project aligns with Montgomery County's policy to reduce and eliminate racial disparities and other inequities in that the response Aligns with demonstrates a clear correlation between racial inequities and the Montgomery project's need, however it lacks a thorough analysis, potentially County's policy omitting at least one of the following points in its submission: to reduce and eliminate racial Historical context Current data disparities and other inequities Community engagement strategy Supplemental research Consultation with those well-versed in topics of racial equity and social justice

Social Equity

Social Equity in CS-CIP model - Example of a tool showing Vulnerability

Project Report - Current Quantitative Measures

Category Culture and Recreation Date Last Modified 01/10/24

SubCategory Libraries Administering Agency General Services

Planning Area Clarksburg and Vicinity Status Planning Stage

EXPENDITURE SCHEDULE (\$000s)

Cost Elements	Total	Thru FY23	Est FY24	Total 6 Years	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	Beyond 6 Years
Planning, Design and Supervision	4,937	8	569	4,380	1,052	1,275	1,202	831	-	27	
Site Improvements and Utilities	5,656	-	3,500	2,158	-	980	1,178		-	-	
Construction	20,172	-	-	20,172		9,189	11,003				
Other	2,975	-		2,975	-	1,352	1,623		-		
TOTAL EXPENDITURES	33,740	8	4,069	29,663	1,052	12,776	15,004	831		2.	

FUNDING SCHEDULE (\$000s)

Funding Source	Total	Thru FY23	Est FY24	Total 6 Years	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	Beyond 6 Years
G.O. Bonds	33,740	8	4,089	29,663	1,052	12,778	15,004	831	-	8. *	
TOTAL FUNDING SOURCES	33,740	8	4,069	29,663	1,052	12,776	15,004	831		1.	

OPERATING BUDGET IMPACT (\$000s)

Impact Type	Total 6 Years	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30
Maintenance	285	-	9.4	-	95	95	95
Energy	168	- 2	12	-	56	58	56
Program-Staff	3,807	- 0	0.7	-	1,269	1,289	1,269
Program-Other	1,808			-	1,202	302	302
NET IMPACT	6,066				2,622	1,722	1,722
FULL TIME EQUIVALENT (FTE)		-	1/4	-	15	15	15

APPROPRIATION AND EXPENDITURE DATA (\$000s)

Appropriation FY 25 Request	2,781
Appropriation FY 26 Request	23,476
Cumulative Appropriation	7,283
Expenditure / Encumbrances	8
Unencumbered Balance	7,275

Year First Appropriation	FY23
Last FY's Cost Estimate	15,383

Project Report Possible Addition of Climate Measures

PROJECT DESCRIPTION

This project provides for the design and construction of a library located in Clarksburg, as outlined in the Clarksburg Master Plan, and appropriate to the needs of the community.

LOCATION

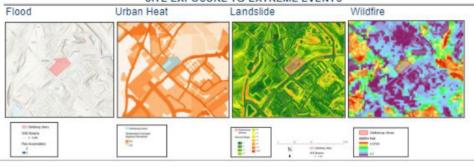
To be determined. The following Clarksburg locations are being considered: Clarksburg Square Road and Public House Road; and MD 355 and Stringtown Road.

ESTIMATED SCHEDULE

Design development will begin in FY24, and construction will start in FY26.

CLIMATE REVIEW

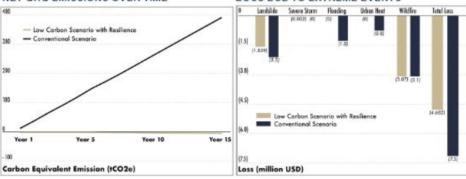
- ☑ Energy Efficiency
- ☑ Greenhouse Gas Emissions
- ☑ Carbon Sequestration Selected: Low Carbon
- ☑ Resilience Selected: Robust
- ☑ Social Equity



CLIMATE MEASURES

Indicator	Unit	Conventional	GHG Emissions: Low Carbon	Resiliency: Robust
Energy Intensity	MWh/year	77	62	62
Annual Greenhouse Gas Emissions	tCO2e/year	26	0	0
Net Annual Greenhouse Gas Emissions	tCO2e/year	26	(0.0)	(0.0)
Lifecycle Net Greenhouse Gas Emissions	tCO2e/20 years	528	(0.3)	(2.7)
Percent annual tCO2e compare	d Percent	100%	0%	0%
Cost to Improve Resilience	\$000s	1	-	63
Loss Avoided due to Resilience*	\$000s	-	-	10,770
Percent loss from hazards compare	d Percent	100%	100%	0%
Adjusted Capital Cost	\$000s	33,740	37,391	37,454
Adjusted Annual O&M Cost	\$000s/year	604	577	577
Adjusted Lifecycle Cost (Capital, O&M, Major Maintenance)	\$000s/20 years	46,878	49,972	51,417
Percent life-cycle cost compare	d Percent	94%	100%	100%

"One occurrence of each extreme event


SITE EXPOSURE TO EXTREME EVENTS

Project Report - Possible Addition of Climate Measures

NET GHG EMISSIONS OVER TIME

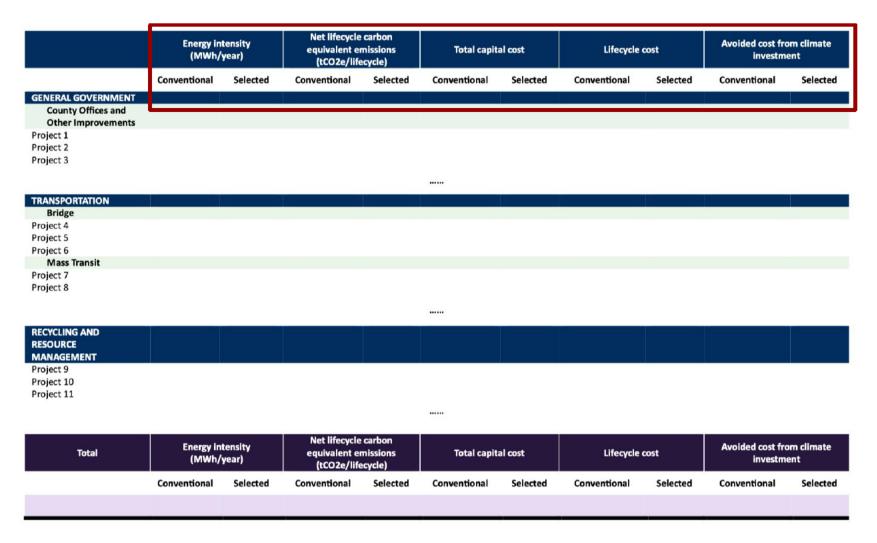
LOSS DUE TO EXTREME EVENTS

RACIAL EQUITY AND SOCIAL JUSTICE (IN PROGRESS)

[Place text here]

PROJECT JUSTIFICATION

The Department's Strategic Facilities Plan (1998 - 2003) recognized the need for library services in the Clarksburg area, including a needs assessment completed in 2001. The Department confirms that the Clarksburg area continues to meet the criteria for a new facility, as outlined in the Department's Facilities Plan 2013-2016. The Clarksburg population is expected to increase from 13,766 in 2010 to almost 40,000 by 2025. The closest library is the Germantown branch, which opened in 2007. The library will serve as the community connection hub to ideas, learning, and the exchange of information. It will improve the community through facilitating knowledge creation, informing the community, and inspiring lifelong learning and collaboration.


FISCAL NOTE

Dedication of a 1.1 acre site was approved by the Montgomery County Planning Board on July 23, 2015 as part of the developer Third Try LLC's design for the site plan for the unbuilt portions of the Town Center on the east and west sides of the development. Pending evaluation of a Program of Requirements, a more refined cost estimate will be provided. Associated parking will be provided by the developer.

COORDINATION

Maryland-National Capital Park and Planning Commission, Department of General Services, Department of Technology and Enterprise Business Solutions, Department of Permitting Services, Washington Suburban Sanitary Commission, Clarksburg Town Center Development District, Department of Public Libraries, Upcounty Regional Service Center.

New Appendices - Summary Report by Project and Department (Sector)

Key indicators show how projects move from conventional to selected performance outcomes (and associated designs)

New Appendices - Green and Climate Finance Indicators

Borrower	Project name	Description	Project period	Criterion met	Total disbursed	Green loan outstanding	Total cost (1000 NOK)	KBN share	Heated area	Estimated im	pact (KBN shar	e)
			(est.)		(1000 NOK)	(1000 NOK)				Energy produced (kWh annually)	Energy avoided (kWh annually)	Corresponds to avoided GHG (tonnes CO ₂ e annually)
Malvik municipality	Vikhammer lower secondary school	A new lower secondary school for approximately 450 pupils featuring a cultural centre, a youth centre and an arts school. The building will have a low energy demand and approximately 1,900 m² of solar panels, and the construction site and bulk transportation vehicles will be fossil-free. The sports pitch will have environmentally friendly artificial grass, and the building will be heated from a local district heating facility. A grant was received from Klimasats for the pre-engineering phase.	2021- 2023	1.2.1 New low-energy buildings	325 640	319 127	407 350	78%	7 367	202 942	200 847	4.4
Malvik municipality	Vikhammer nursery	A new nursery with a low energy demand featuring extensive use of mass timber. The requirements set for the building are a combination of the criteria for nZEBs in the Norwegian Agency for Public and Financial Management's Criteria Wizard for Sustainable Public Procurement and in the Futurebuilt programme. Energy will be produced from solar panels and a ground source heat pump.	2022- 2023	1.2.1 New low-energy buildings and 1.2.2 New buildings with climate-friendly materials	107 360	105 213	134 200	78%	1 368	43 299	66 817	1.2
Trondheim municipality	Risvollan nursery	The ambition for the new Risvollan nursery in Trondheim is for it to be the municipality's first energy-plus nursery. The building will be certified as BREEAM-NOR 'Very Good', and solar panels are planned for its roof.	2022- 2023	1.2.1 New low-energy buildings	39 500	39 500	119 000	33%	2 033		44 268	0.5
Sykkylven municipality	New Sykkylven school	A new school and sports hall will be constructed in Bakkeøyane, northeast of central Sykkylven. Extensive use will be made of mass timber and glulam, and the school building and sports hall will also be built as a single building with a shared energy centre, using heat from geothermal wells.	2022- 2023	1.2.2 New buildings with climate-friendly materials	198 350	198 350	363 000	55%	7 535	136 605	56 407	2.1
Skaun municipality	New fire station	The fire station in Skaun is being moved to central Børsa, and will be built in climate-friendly materials, using mass timber to support the roof and in the columns of the outer walls.	2021- 2022	1.2.2 New buildings with climate-friendly materials	33 000	32 585	49 500	66%	1 315	-	12119	0.1
Flakstad municipality	New Flakstad school	Flakstad school will be built using mass timber for the load-bearing system, floors and walls. The building will be heated using energy wells, and solar panels will be installed to produce energy locally.	2021- 2022	1.2.2 New buildings with climate-friendly materials and 1.2.4 Buildings with locally produced energy	96 000	96 000	124 500	77%	1685	160 916	8 315	1.9

Climate-smart CIP - Early support and field tests

2013 World Bank President's Initiative

to reach 300 cities in developing countries over 4 years to help them plan for a low-carbon future and get the needed financing flowing

Task force to Catalyze Climate Action

Low Carbon Livable Cities & Resilient Cities Initiatives

World Bank City Creditworthiness Initiative

World Bank City Resilience Program

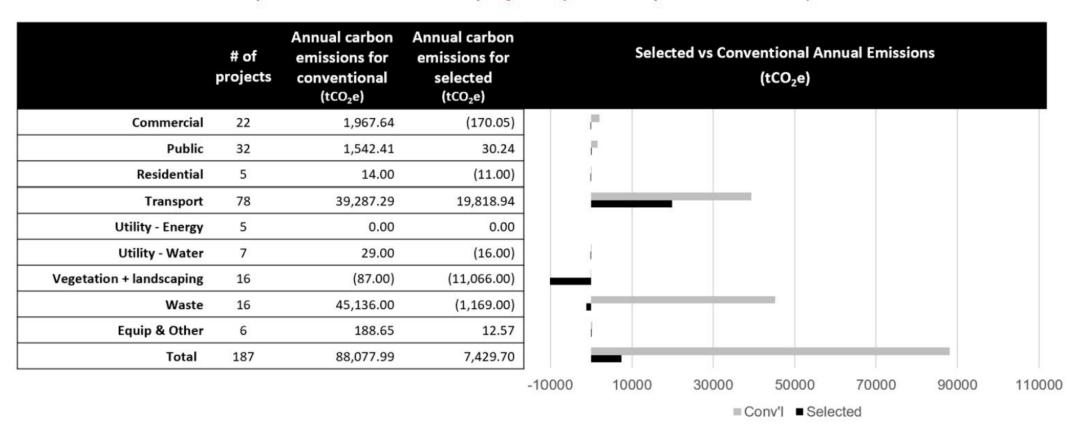
Partnerships and funding sources

World Bank, PPIAF, Rockefeller Foundation, Global Environment Facility, C40 Cities Network, UN-Habitat, Korean Green Growth Fund, African Development Bank, UNIDO,...

Workshops and technical assistance programs

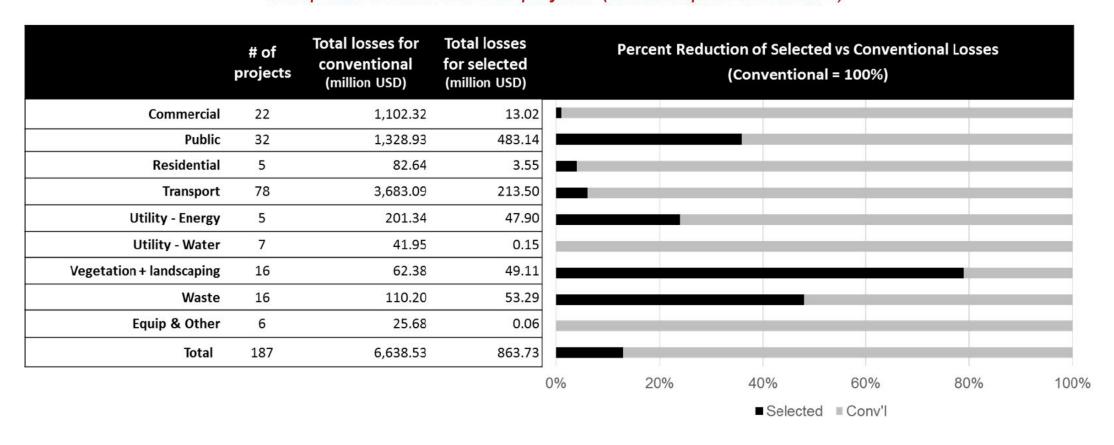
700+ municipal directors of finance & planning in 30+ countries, including C40 cities, Rockefeller's 100 Resilient Cities

Country-wide workshops in Colombia, Jordan, Palestine, India, Uganda, Rwanda, Tanzania, Ethiopia, Kenya, Indonesia


Regional workshops, East Asia (12 nations), Washington DC (18 nations)

Technical Assistance Programs in India, Turkey, Ethiopia, Uganda, Tanzania

San Francisco Public Utilities Commission


Field Test: Eliminating GHG Emissions through the Climate-smart CIP

Sample of 8 cities and 187 projects (\$2.5B capital investment)

Field Test: Improving Resilience through the Climate-smart CIP

Sample of 8 cities and 187 projects (\$2.5B capital investment)

Capital Investment Planning and Climate Budgeting for Clean Energy and Low Carbon Infrastructure Projects

Prepared in collaboration with Montgomery County, Maryland

Dr. Jan Whittington Urban Infrastructure Lab, University of Washington **Dr. Adrienne Greve** Cal Poly San Luis Obispo

April 18, 2024

