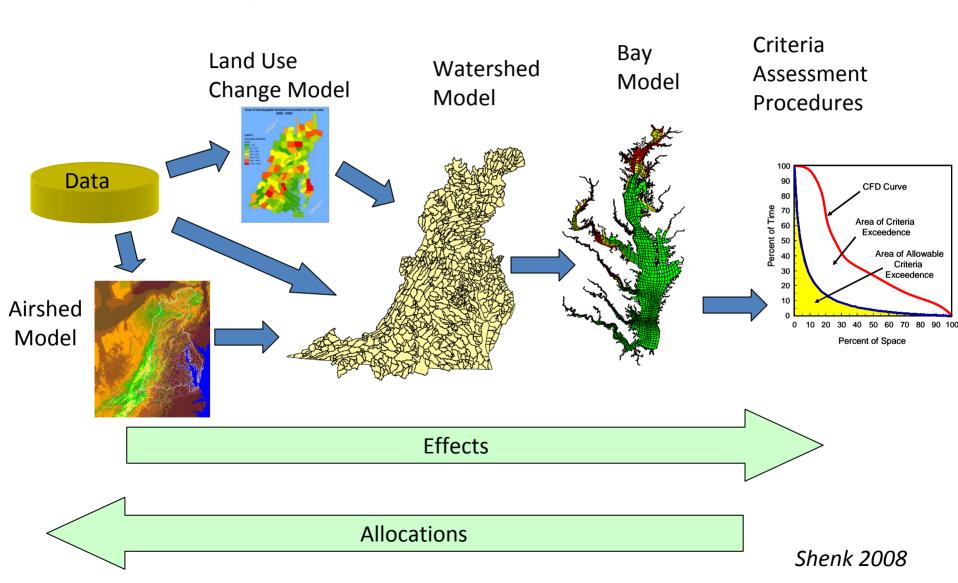


Chesapeake Bay Watershed

Chesapeake Bay Overview

- Largest of 130 estuaries in the United States
- Length is 200 miles
- Width ranges from 3.4 to 35 miles
- Average depth is 21 feet
- Deep trough (up to 174 feet) along its length
- 64,000 square-mile watershed area
- Land-to-water ratio of 14:1
- 11,684 miles of shoreline
- 150 major rivers and streams in watershed
- Susquehanna River provides 50 percent of the freshwater input
- Watershed population of 15 million



Chesapeake Bay is impaired by low dissolved oxygen ...

Principal Water Quality Drivers

- Stream and river inflows
- Nutrient (N and P) and solids loads
- Temperature
- Wind
- Sea level
- Bathymetry
- Chemical-biological processes

Existing Decision Support System

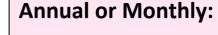
Watershed Model Inputs

Hourly Values:

Rainfall

Snowfall

Temperature


Evapotranspiration

Wind

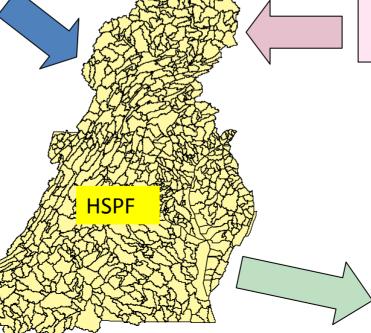
Solar Radiation

Dewpoint

Cloud Cover

Land Use Acreage

BMPs

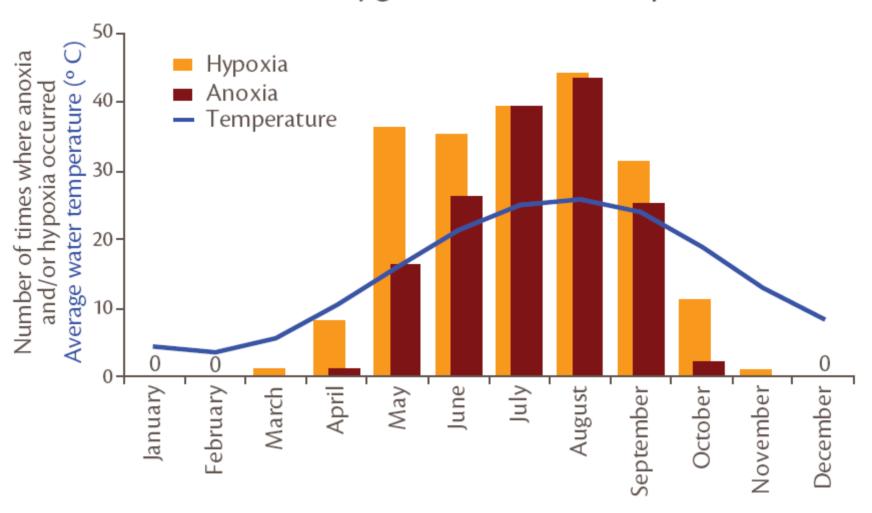

Fertilizer

Manure

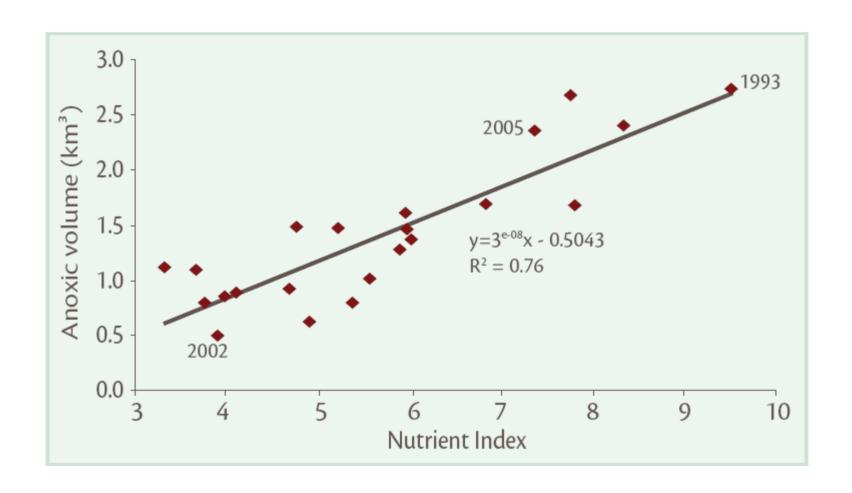
Atmospheric Deposition

Point Sources

Septic Loads

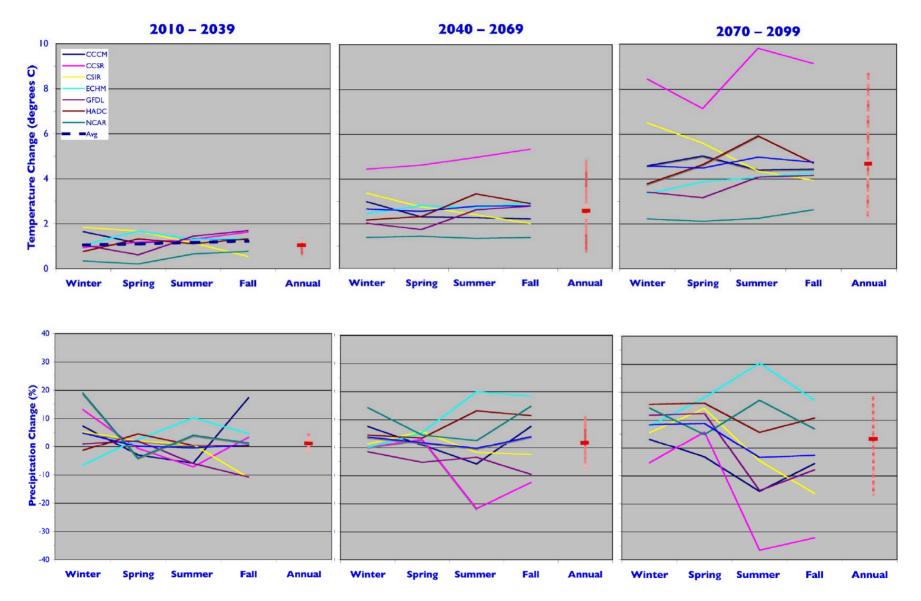

Daily output compared To observations

Shenk 2008


Principal Climate Drivers

- Temperature
 - Bay water
 - Evapotranspiration
- Precipitation
 - Stream and river inflows
- Wind
 - Water column mixing
- Sea level
 - Bay water depth and volume

Low dissolved oxygen linked to temperature



Low dissolved oxygen linked to nutrient loads

Projected Changes for Chesapeake Bay

- Temperature
 - Increase (high certainty)
- Precipitation
 - Increase in winter and spring (likely)
 - Winter and spring streamflows will increase (likely)
 - Uncertainty in both magnitude and direction of changes in annual streamflows
- Wind
 - Storm intensity will increase (likely)
- Sea level
 - Increase (high certainty)

Figure 3. Seasonal temperature (top) and precipitation (bottom) changes averaged over the Chesapeake Bay watershed with respect to 1971 to 2000 predicted under the A2 scenario by seven climate models for 2010 – 2039, 2040 – 2069, and 2070 – 2099. At the far right of each panel are the annual average changes for the seven-model mean and the overall model range (reproduced from Najjar et al. [2008]).

Table 1. Summary of hydrological modeling studies showing the influence of climate change on streamflow in the Mid-Atlantic region (reproduced from Najjar et al. [2008]).

Reference	Region	CO ₂ Scenario	Time Period	Number of GCMs	Annual Streamflow Change (%)
McCabe and Ayers (1989)	Delaware River Basin	Doubling	-	3	- 39 to 9
Moore et al. (1989)	Mid-Atlantic/New England	Doubling	_	4	- 32 to 6
Najjar (1999)	Susquehanna River Basin	Doubling	_	2	24 ± 13
Neff et al. (2000)	Susquehanna River Basin	I% yr⁻¹ increase	1985 - 1994 to 2090 - 2099	2	- 4 to 24
Wolock and McCabe (1999)	Mid-Atlantic	1% yr⁻¹ increase	1985 - 1994 to 2090 - 2099	2	- 25 to 33
Hayhoe et al. (2007)	Pennsylvania/New Jersey	AIFI and BI	1961 – 1990 to 2070 – 2099	2	9 to 18

Climate Driver	Direct Effect	Secondary Effect	Influence on Hypoxia
Increased temperature	More evapotranspiration	Decreased streamflow	+
		Land-use and cover changes	+/-
	Less snow cover	More nitrogen retention	-
	Warmer bay temperature	Stronger bay stratification	+
		Higher metabolic rates	+
More precipitation	More streamflow	Stronger bay stratification	+
		More nutrient loading	+
	More extreme rainfall	Greater erosion of soil P	+
Less precipitation	Less streamflow	Weaker bay stratification	-
		Less nutrient loading	
Higher sea level	Greater bay depth/volume	Stronger bay stratification	+
		Greater bottom water volume	-
		Less hydraulic mixing	+
	Less tidal marsh	Diminished nutrient trapping	+
Weaker summer wind	Less water column mixing	More persistent stratification	+
Stronger summer wind	More water column mixing	Less persistent stratification	_

Chesapeake Bay Water Quality Information Needs for Adaptation Planning

Parameters

- Precipitation
- Snowfall
- Temperature
- Evapotranspiration
- Wind
- Solar radiation
- Dewpoint
- Cloud cover

Spatial-Temporal Scales

- Watershed Model land segment (usually county)
- Period of simulation 1984-2005
- Hourly temporal resolution