Total Maximum Daily Load Implementation Plans

Baltimore County Department of Environmental Protection and Sustainability

Presentation Outline

1. TMDLs of Baltimore County	 Completed TMDL Implementation Plans by watershed Future TMDLs 			
2. Timeline	 Timeline for meeting TMDL targets Milestones Reporting 			
3. Approach and Monitoring	 Approach by pollutant type Uncertainties Monitoring by pollutant type 			

TMDL Implementation Plans in Baltimore County

- 22 TMDL Implementation Plans (In review by MDE and EPA Region 3)
- 3 Plans In Development
 - Liberty Reservoir Phosphorus and Sediment
 - Trash TMDL Implementation Plan in Development (Gwynns Falls and Jones Falls)

Prettyboy Reservoir		Liberty Reservoir (Phosphorus and Sediment in development)	Lower North Branch Patapsco	Gwynns Falls	Jones Falls	Back River	Baltimore Harbor
Phosphorus	Phosphorus	Phosphorus	Bacteria	Bacteria	Bacteria	Nutrients	Nutrients
Bacteria	Sediment	Sediment	Sediment	Sediment	Sediment	Bacteria	PCBs
Mercury	Bacteria	Bacteria			PCBs	PCBs	Chlordane
	Mercury					Chlordane	

Timeline

 All Sediment and Nutrient TMDL Implementation Plans are consistent with Bay TMDL timeline

Timeline

- Will prepare 2 year Milestones for each TMDL in accordance with Chesapeake Bay TMDL 2 year milestones
- Must account for lag times when measuring progress

Sediment Interim Milestones

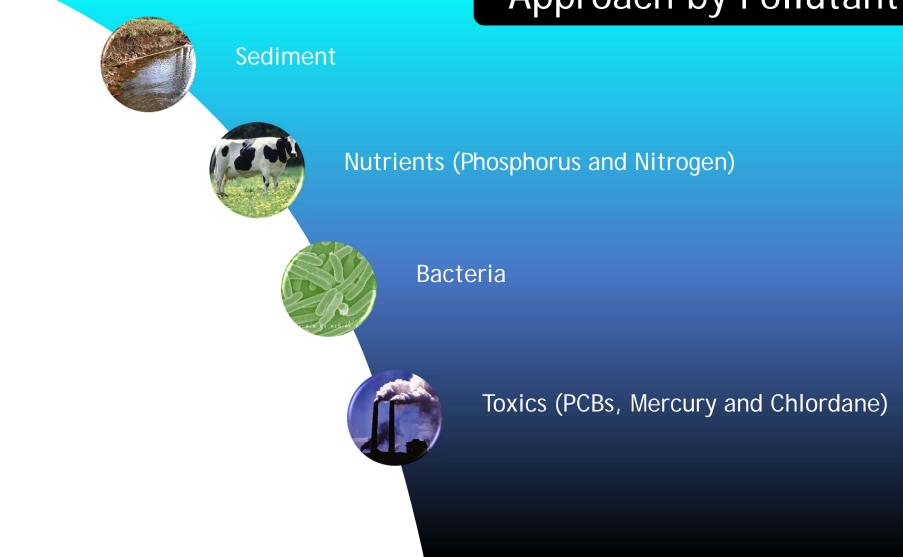
Measure	Year						
	2017	2020	2023	2025	2026	2029	
Implementation of Reduction Actions		50%		100%			
Mean BIBI Score	2.23	2.46	2.70		2.97	3.27	

Timeline

• Bacteria Interim Milestones

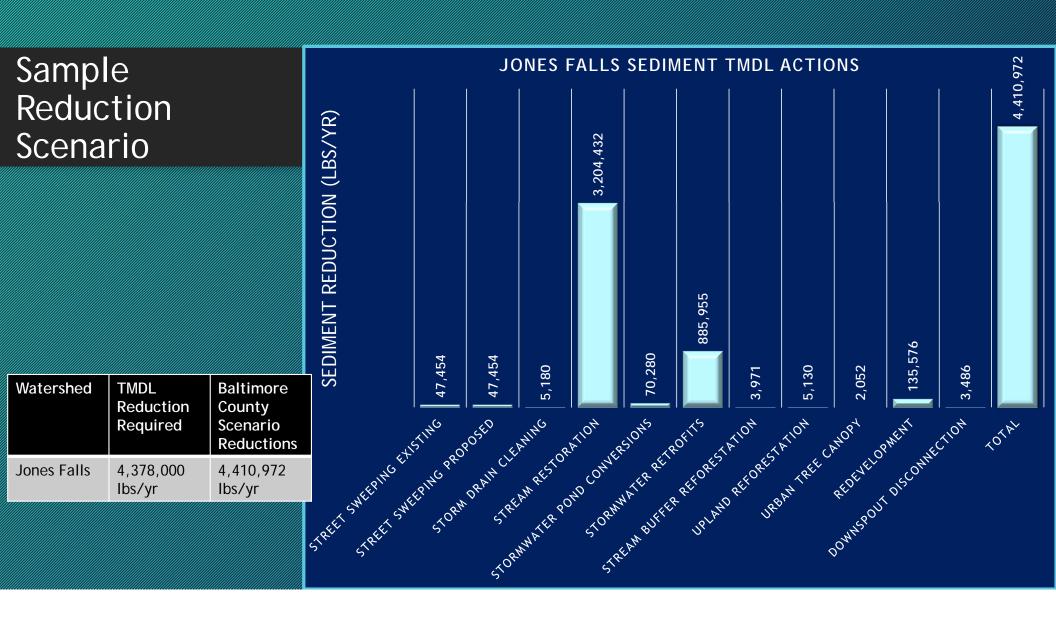
Single Sample Target (MPN/100 ml)							
Weather Condition	2020	2025	2030	2035			
Dry	576	410	298	235			
Wet	NA	NA	NA	NA			
Geometric Mean Target (MPN/100 ml)							
Dry	477	360	243	126			
Wet	6,880	4,630	2,380	126			

Reporting


- Progress reporting will be through the Annual NPDES-MS4 Permit Report
- <u>http://www.baltimorecountymd.gov/Agencies/environment</u>

Adaptive Management

- Note:
- All of the County's TMDL Implementation Plans follow an **adaptive approach** to meeting reductions.
- An adaptive management assessment will be developed for the plans to enhance actions as needed.
- Loading rates and reduction credits have been calibrated to the current Chesapeake Bay Model



Approach by Pollutant Type

Sediment Reductions Approach

- The County developed a potential implementation scenario,
- The TMDL Targets were adjusted for change in load since the baseline year of the TMDL
- The County's Small Watershed Action Plans (SWAPs) were used to inform the potential for actions in each watershed
- The total actions in the scenario were not to exceed actions identified for achieving the Bay TMDL

Nutrient Reduction Approach

- Nutrient Reduction Approach was similar to Sediment
- Also developed a potential reduction scenario
- These actions combined with sediment actions were also not to exceed actions designated to meet the Bay TMDL
- Sediment reducing actions also reduce nutrients
- Potential reduction scenarios were adjusted, as needed, to meet both sediment and nutrient TMDLs

Sediment and Nutrient Monitoring

- Continue Random Point Biological Monitoring
- Currently collecting data for Subwatershed Biological Condition Monitoring- determine progress on watershed basis
- Continue Chemical Monitoring Tests for Chlorides, Sulfates, and TSS
- Explore the utility of deploying Continuously Recording Turbidity Meters - Currently in pilot
- Continue SAV monitoring

Bacteria Reduction Approach

Unknown:

- There is no established loading rate for bacteria by land use for Baltimore County
- Available literature supports that actions included in the implementation approach will lead to reductions, but exact numbers are still unknown

Approach:

- Achieve water quality standards and percent reductions for each monitoring station
- Implement actions that are known to have reduction effect
- Human inputs are prioritized, but actions are included to target each source

How the Reductions Will Be Achieved

The following are just some of the actions that will be utilized to achieve reduction requirements:

- Continue to meet requirements of the consent decree
- Continue to assist land owners in addressing failing septic systems
- Investigate and convert existing dry detention ponds
- Implement an awareness campaign to spread information about pet waste

- Design and implement stormwater retrofits
- Continue stream restoration projects
- Street sweeping
- Storm drain inlet cleaning

Reductions Required by Trend Monitoring Station Long-Term Jones Falls Average E. Target Load GWY-8 JON-3 % Required **MDE Station Code Baseline Load** TMDL Load nns Falls (BillionMPN/year) (BillionMPN/year) (BillionMPN/y GW JON-1 JON 92.4% JON0184 JON-3 County 1,115,075 1,206,325 91,250 UQQ0005 92.1% JON-4 County 123,370 10,585 133,955 GWY 95.3% JON0082sub JON-2 County 41,975 887,315 845,340 95.3% JON0039sub JON-1 City 3,340,480 1,184,260 156,220 97.8% **SRU0005** JON-5 City 636,560 622,960 13,870 94.4% Total 313,900 6,204,270 5,890,735 Legend Bacteria_Trend_Station

ore County/City and Carrol C

HE

The County will measure success by following the reductions achieved at bacteria monitoring stations within the watershed

Bacteria Monitoring

- Initially Trend Monitoring done in conjunction with Carroll County and Baltimore City
- Future Monitoring Plans:
- Sub-watershed Prioritization Monitoring
- Bacteria Source Location Tracking implemented based on these results
- Bacteria Source Relative Contribution Tracking (species tracking): Human, Pet Waste, Wildlife, Livestock

Bacteria Monitoring

 E. coli Geometric Mean Concentrations at Site JON-3 for both Annual and Seasonal Flow Periods Stratified by Flow Condition, MDE Results Added for Comparison

Toxics Reduction Approach

Unknown:

- Awaiting data from MDE on the results of 2014 fish tissue studies
- Sources of PCBs and Mercury need to be identified
- Will require additional monitoring
- Unknown relationship between toxics and sediment transport
- Lag times

Toxics Reduction Approach

Approach:

- Education of proper disposal methods of hazardous materials is an action proposed for all three toxic pollutants
- As a practice, adding sand organic filters to all SWM pond conversions
 PCBs
- PCBs adsorb to sediments, so initial actions include those that reduce sediment
- Baltimore County will work with MDE to develop a load reduction calculation for PCBs that will link sediment reductions to PCB reductions
- Monitoring results will allow more targeted actions

Toxics Reduction Approach

Approach:

Mercury

- The County is not proposing any additional restoration actions for mercury reduction other than what is being proposed to reduce nitrogen and phosphorus
- The Maryland Healthy Air Act required a 90% reduction of mercury emissions from 2002 levels by 2013, this may have a major impact on mercury levels in reservoirs

Chlordane

 Management and restoration actions of chlordane will be determined based on the findings of the fish tissue monitoring results

Toxics Monitoring and Reporting

- Awaiting results of 2014 fish tissue monitoring from MDE
- Baltimore County plans to develop a program to monitor fish tissue on a three year cycle
- The County expects to develop a program to monitor the bioavailability of toxics using caged bivalves
 - Could help focus future efforts in identifying toxics sources

