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Bike Data is hard to come by

• State DOTs generally don’t count bicycles as they do motorized traffic


• Specialized hardware is needed for automated counts


• Manual counting is labor-intensive


• Bicycle usage is more variable than motorized traffic


• even more data are necessary to capture underlying parameters
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agencies with limited..

• budgets for bicycle data collection


• some existing bicycle-specific modeling


!

• can collect modest amounts of counts


• may not be able to get meaningful outputs
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Leverage existing data and look for 
additional sources



A Volume Model to  
Combine available data

• Manual intersection counts


• Short duration automated counts


• Continuous count stations


• Route prediction algorithms


• GPS studies


• topography


• Likely commute patterns


• Weather histories
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• Temporal Factoring - we generally don’t have continuous year-round data


• Spatial Factoring - we can’t observe every street and path


• Network-wide analyses for safety and planning purposes thanks to spatially 
and temporally continuous synthetic data

The Concept
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Information flow



Routing

• Generalized least cost routing


• instantaneous slope (National Elevation Data Set)


• presence of dedicated bicycle facilities (from Open Street Map)


• motorized AADT


• distance


• Stochastic routing between pairs of TAZs


• more trips for closer TAZs since origin and destination are random


• weights of each cost function randomly varied each run to yield a realistic 
diversity of routes
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Information flow - Routing



Temporal Factoring

• Hourly variation


• sinusoidal base demand curve


• morning and evening gaussian peaks


• Weekday vs. Weekend


• Temperature and Precipitation


• Markov-Chain Monte Carlo sampling of posterior parameter distributions


• fit to gamma or beta distributions as appropriate
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FIGURE 3 Ft vs. Te using sampled MCMC parameter
values.

sensitive to relative humidity, thereby incorporating those1
variables into a single effective temperature.2

sc =
ln(1/Pm �1)

Tm �Tmc
(8a)

ftc =
1

1+ esc(Te�Tmc)
(8b)

sh =
ln(1/Pm �1)

Tm �Tmh
(9a)

fth =
1

1+ esh(Te�Tmh)
(9b)

fti =

(
ftc if Tei < Tm

fth if Tei � Tm
(10)

Fti = ft
�1 fti (11)

Combined model3
The MCMC model ultimately relates expected volumes4
to observed counts assuming that the expected counts are5
Poisson distributed with mean µi given by Equation 126

µi = AADB j(i)FpiFtiFciFhi (12)

where AADB j is the unobserved annualized average daily7
volume for edge e, the location of count observation i.8

Count Data9
manual observations every 15min, tube counts every10
15min, MPO estimates of AADB between TAZs.11

Edge Correlation 12
Temporal factoring through the MCMC model defined by 13
Equation 12 provides an elegant means to address the tem- 14
poral factoring challenge of individual observations, how- 15
ever greater insight can be offered by using these values 16
to update prior assumptions about AADB for every edge 17
in the network. The posterior distributions of AADB j and 18
pm j , the two values estimated by edge rather than glob- 19
ally, can be represented by gamma and beta distributions 20
respetively. The final step of the framework spatially ex- 21
tends available count data by updating the prior AADB j 22
and pm j parameter estimates of all edges. The prior val- 23
ues are now either the posteriors sampled by MCMC and 24
fit to their respective distributional form, or the original 25
prior estimates from the MPO travel model. The updating 26
values come from the MCMC posterior parameters only. 27
Conveniently, in the case of gamma and beta distributions, 28
the updating is a simple sum of each parameter, however 29
a correction must be made for the exected ratio of AADB 30
between the “local” edge being updated and the “remote” 31
location with data, as well as the anticipated correlation 32
between the volumes of the two edges. 33

Edge volume ratios are computed as a simple 34
comparison of the MPO prior AADB between the lo- 35
cal and remote edge. Correlation between the edges is 36
computed as the AADB-weighted percentage of stochas- 37
tic routes that utilize both edges. 38

r j,k =
1

AADB jo
Â

r2R j\Rk

AADBro (13)

g j,k =
AADB jo

AADBko

(14)

This computation is the most expensive step in 39
the framework, however it need not be redone as new 40
count data becomes available. Only a change in the net- 41
work or routing algorithm requires this. 42

RESULTS 43
CONCLUSIONS 44
The spatially and temporally continuous model of bicycle 45
usage produced using this framework can be readily ex- 46
tended to accommodate additional parameters of interest 47
and as a basis for further analysis. For example, com- 48
munities with long bicycle count histories could add an 49
annual growth rate term in the MCMC model to capture 50
long term trends. In fact, this is really the only way to 51
estimate not just a value, but a confidence in such an im- 52
portant parameter. 53

Prioritization of scarce infrastructure data col- 54
lection and enhancement funds are also enabled by this 55
model. Posterior AADBs and edge correlations can be 56
used to compute the most influential sites for future data 57
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Information flow - Temporal Factoring
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Hourly variation
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Hourly variation
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Spatial Factoring

• Expected bicycle usage on unobserved streets


• Correlations and volume ratios between all related pairs of directional streets 
are computed from the stochastic routes


• Bayesian updating of prior AADB estimates 


• using posterior AADB from temporal factoring modified by correlation and 
expected volume ratio


• Results are posterior distributions for AADB and morning peak proportion for 
every street
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Information flow - Spatial Factoring
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With these data

• Immediate visualization and planning


• Evaluating current impacts of proposed infrastructure


• Feedback loops with Travel Demand Model


• Network-wide exposure values for safety prioritization


• Future scenario modeling using latent growth term(s) 
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Automated counts from traffic signal cameras
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Vehicle tracking

• In-between complexity


• simple presence detection


• advanced real-time tracking 


• super-pixel method to identify 
vehicles


• bounding box for classification and 
recognition in departing view


• speed and trajectory
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Thank you  |  Questions? 
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