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Sike Data Is hard to come by

- State DOTs generally don’t count bicycles as they do motorized traffic

- Specialized hardware is needed for automated counts

- Manual counting is labor-intensive

* Bicycle usage is more variable than motorized traffic

« even more data are necessary to capture underlying parameters



agencies with limited..

 budgets for bicycle data collection

« some existing bicycle-specific modeling

« can collect modest amounts of counts

* may not be able to get meaningful outputs

Leverage existing data and look for
additional sources



A Volume Model to
Combine available data

Manual intersection counts

Short duration automated counts

Continuous count stations

Route prediction algorithms
* GPS studies

* topography

Likely commute patterns

Weather histories




The Concept

- Temporal Factoring - we generally don’t have continuous year-round data

- Spatial Factoring - we can’t observe every street and path

- Network-wide analyses for safety and planning purposes thanks to spatially
and temporally continuous synthetic data
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Routing

- Generalized least cost routing

instantaneous slope (National Elevation Data Set)

presence of dedicated bicycle facilities (from Open Street Map)

motorized AADT

distance
- Stochastic routing between pairs of TAZs
* more trips for closer TAZs since origin and destination are random

- weights of each cost function randomly varied each run to yield a realistic
diversity of routes



Information flow - Routing
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Temporal Factoring

* Hourly variation

« sinusoidal base demand curve

* morning and evening gaussian peaks

- Weekday vs. Weekend

- Temperature and Precipitation

- Markov-Chain Monte Carlo sampling of posterior parameter distributions

 fit to gamma or beta distributions as appropriate



Information flow - Temporal Factoring
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Hourly variation

0.15 =
>\.0.10 -
Y
R7
o
Q
o
0.05 -
0.00 =
| | | | | | |
0 4 8 12 16 20 24
hour
—— combined ==+ morning peak

===+ evening peak = = sinusoidal

11



kernel density

Hourly variation

| | |
12 14 16

peak hour

evening: . imorning

1
18

20

>
N
7
=
o
<
D)
=
—
5
=
N
0= S | |‘ |
0.00 0.25 0.50 0.75 1.00

posterior value

Z base vol commute

PN
'/ Ebase vol non—commute

/

___\

»° 1commute day P

[, i |

12



20 =
N
~
3)
P
2
o

10 =

O —

|
06:00

Hourly aggregated model and observations for a single day

| | |
12:00 15:00 18:00

hour

. mcmc - observed

13



Spatial Factoring

Expected bicycle usage on unobserved streets

Correlations and volume ratios between all related pairs of directional streets
are computed from the stochastic routes

Bayesian updating of prior AADB estimates

» using posterior AADB from temporal factoring modified by correlation and
expected volume ratio

Results are posterior distributions for AADB and morning peak proportion for
every street

14



Information flow - Spatial Factoring
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With these data

- Immediate visualization and planning

- Evaluating current impacts of proposed infrastructure

« Feedback loops with Travel Demand Model

* Network-wide exposure values for safety prioritization

 Future scenario modeling using latent growth term(s)
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Automated counts from traffic signal cameras

19



Venhicle tracking

* In-between complexity

« simple presence detection

 advanced real-time tracking

* super-pixel method to identify
vehicles

* bounding box for classification and
recognition in departing view

 speed and trajectory
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Thank you | Questions?

alec.gosse@ccri.com
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