Comprehensive Bicycle Volume Estimation from Sparse Data

C Alec Gosse Phd alec.gosse@ccri.com (434) 284-9432

Bike Data is hard to come by

- State DOTs generally don't count bicycles as they do motorized traffic
- Specialized hardware is needed for automated counts
- Manual counting is labor-intensive
- Bicycle usage is more variable than motorized traffic
 - even more data are necessary to capture underlying parameters

agencies with limited..

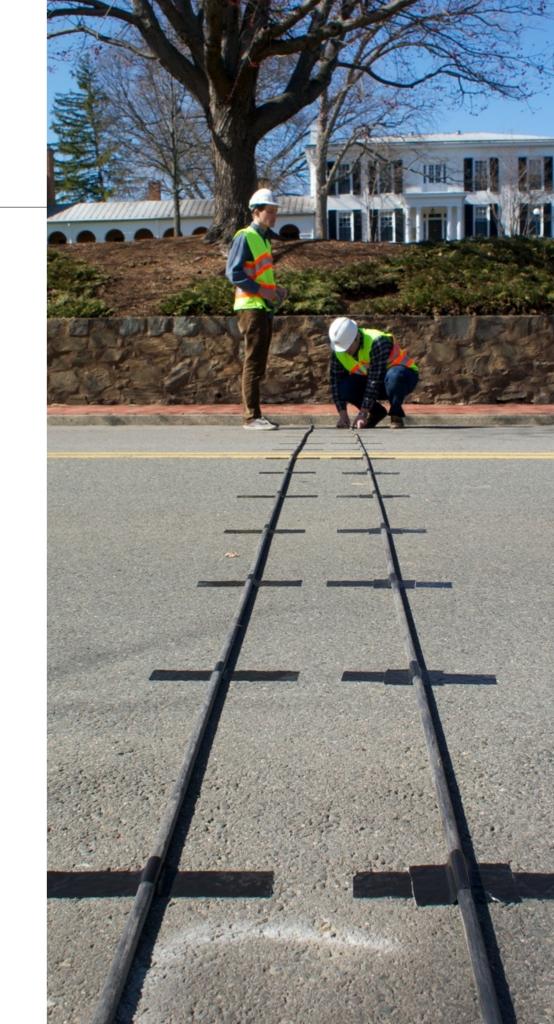
- budgets for bicycle data collection
- some existing bicycle-specific modeling

- can collect modest amounts of counts
- may not be able to get meaningful outputs

Leverage existing data and look for additional sources

A Volume Model to Combine available data

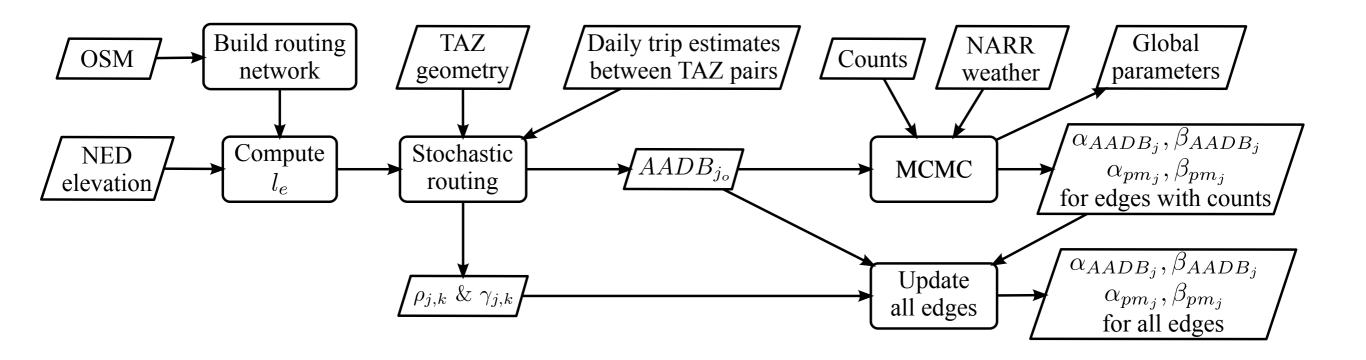
- Manual intersection counts
- Short duration automated counts
- Continuous count stations
- Route prediction algorithms
 - GPS studies
 - topography
- Likely commute patterns
- Weather histories



The Concept

- Temporal Factoring we generally don't have continuous year-round data
- Spatial Factoring we can't observe every street and path
- Network-wide analyses for safety and planning purposes thanks to spatially and temporally continuous synthetic data

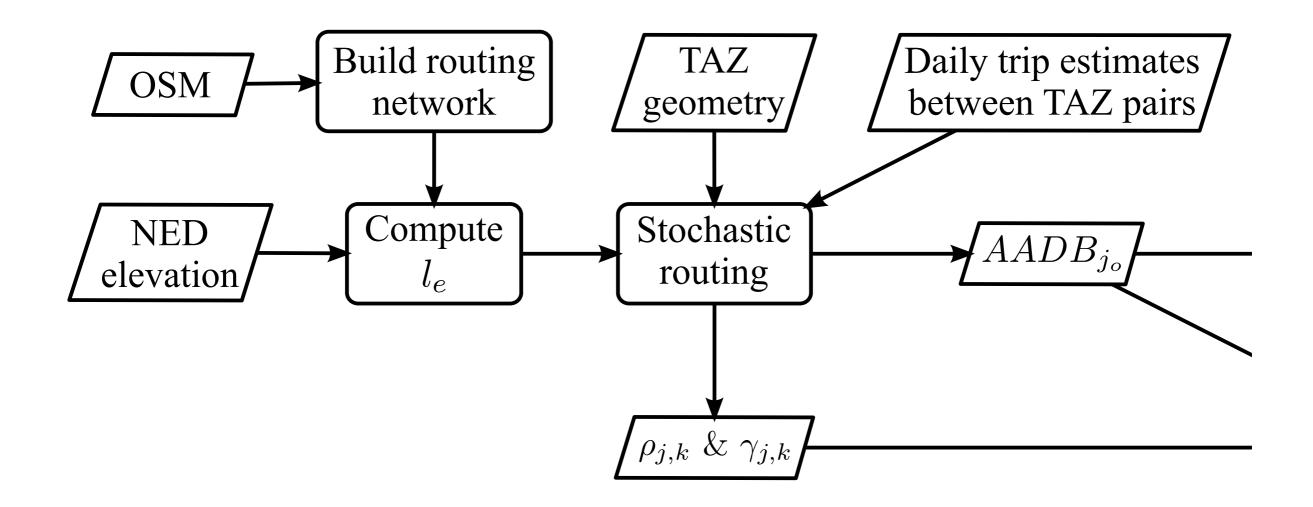
Information flow



Routing

- Generalized least cost routing
 - instantaneous slope (National Elevation Data Set)
 - presence of dedicated bicycle facilities (from Open Street Map)
 - motorized AADT
 - distance
- Stochastic routing between pairs of TAZs
 - more trips for closer TAZs since origin and destination are random
 - weights of each cost function randomly varied each run to yield a realistic diversity of routes

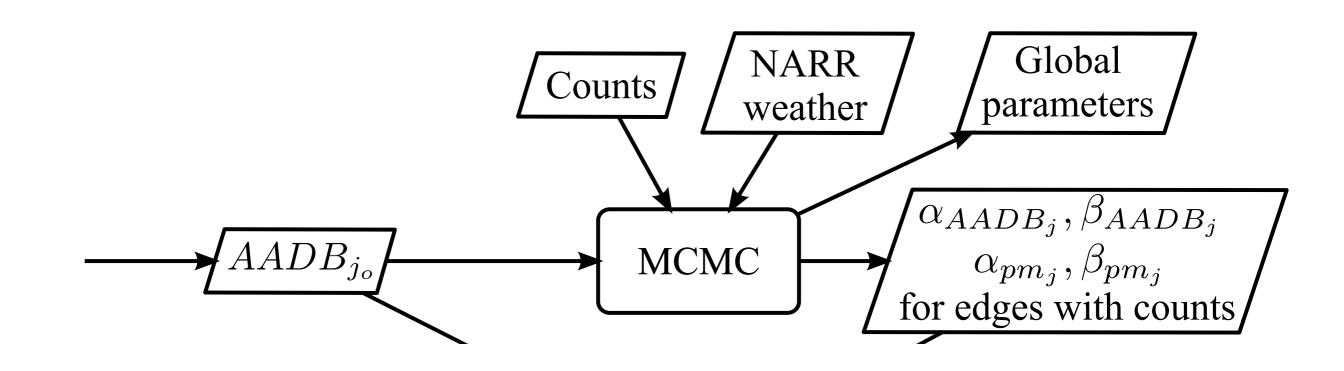
Information flow - Routing



Temporal Factoring

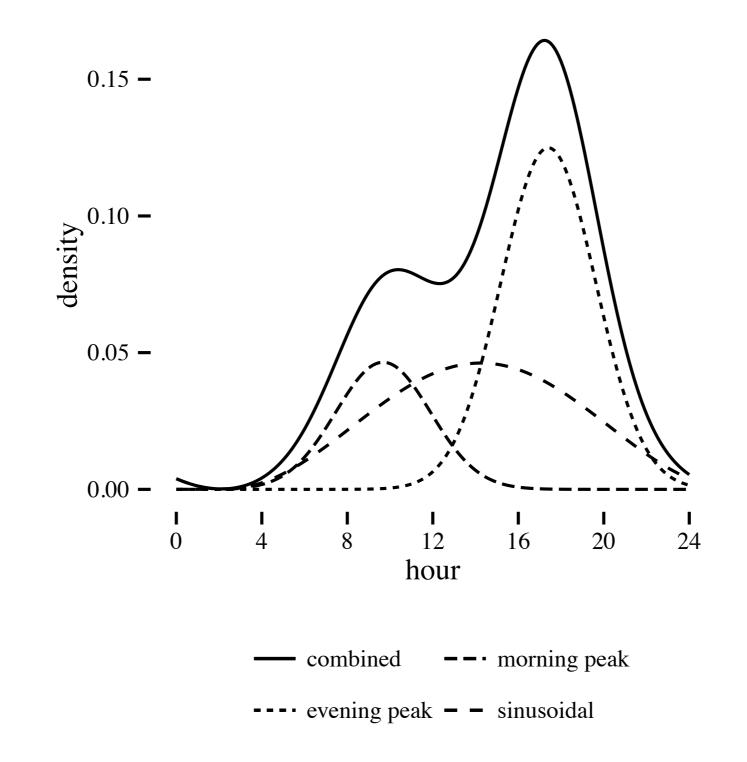
- Hourly variation
 - sinusoidal base demand curve
 - morning and evening gaussian peaks
- Weekday vs. Weekend
- Temperature and Precipitation
- Markov-Chain Monte Carlo sampling of posterior parameter distributions
 - fit to gamma or beta distributions as appropriate

Information flow - Temporal Factoring

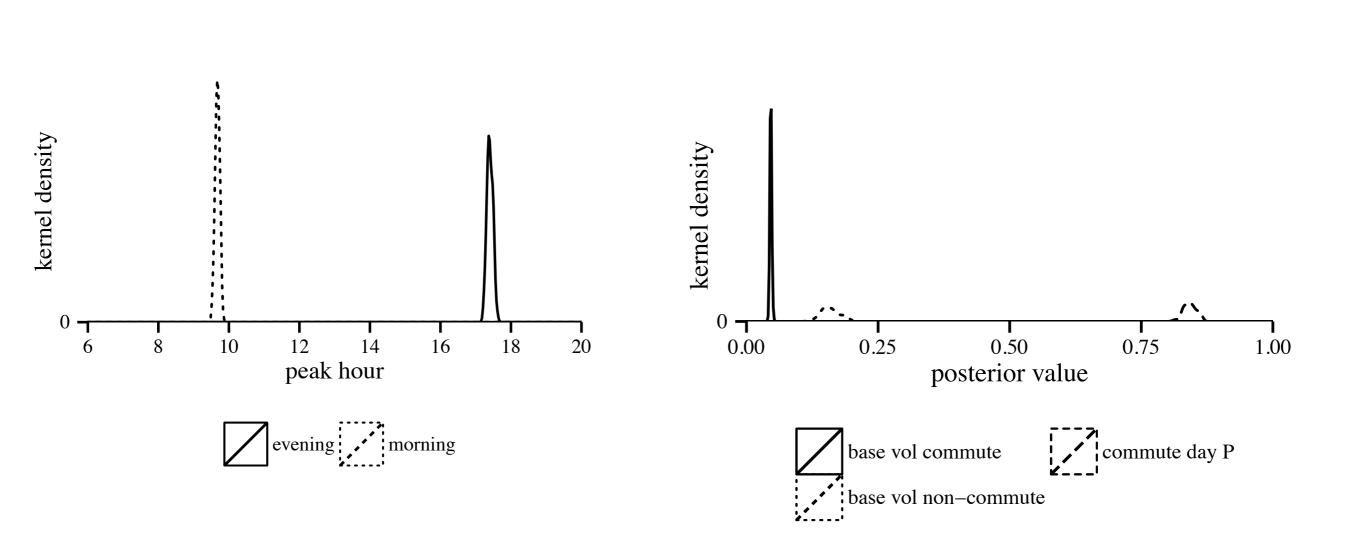


$$\mu_i = AADB_{j(i)}F_{p_i}F_{t_i}F_{c_i}F_{h_i}$$

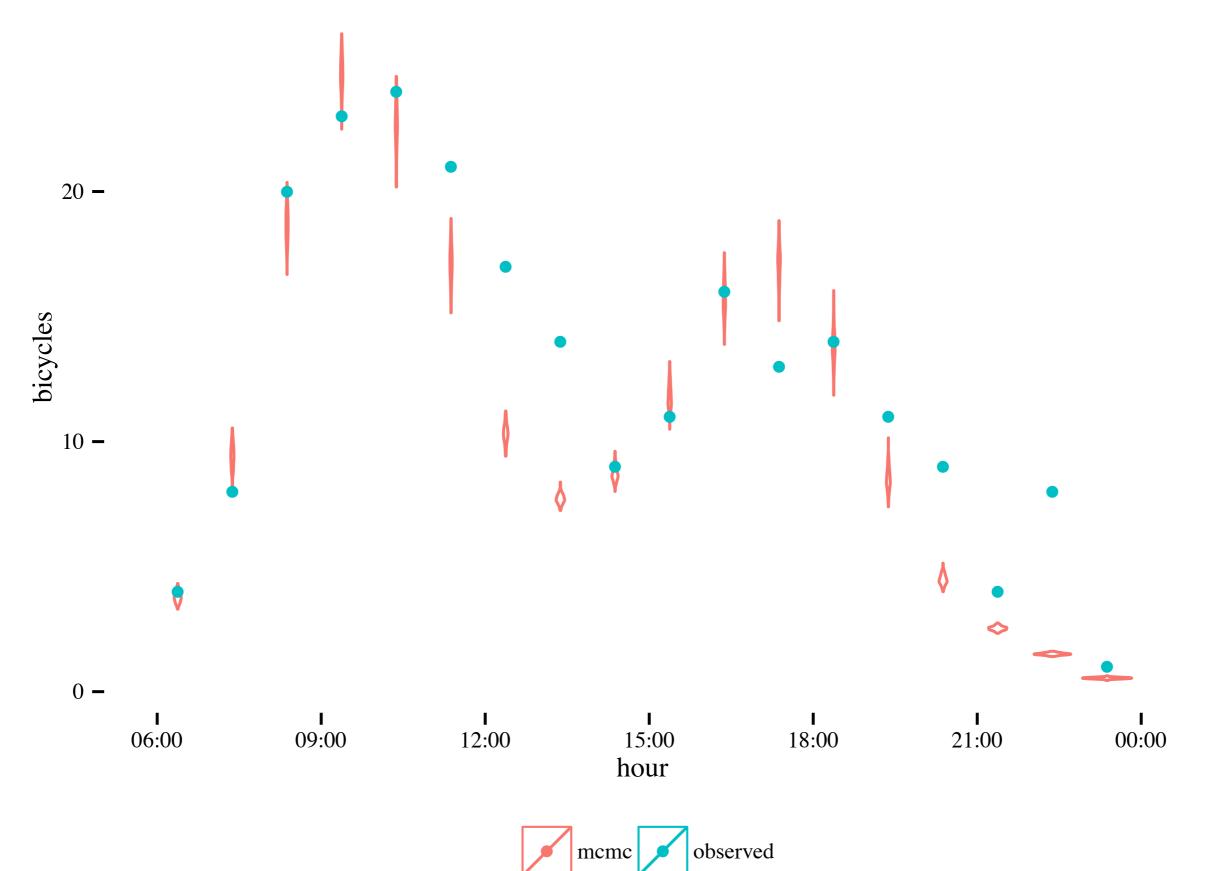
Hourly variation



Hourly variation



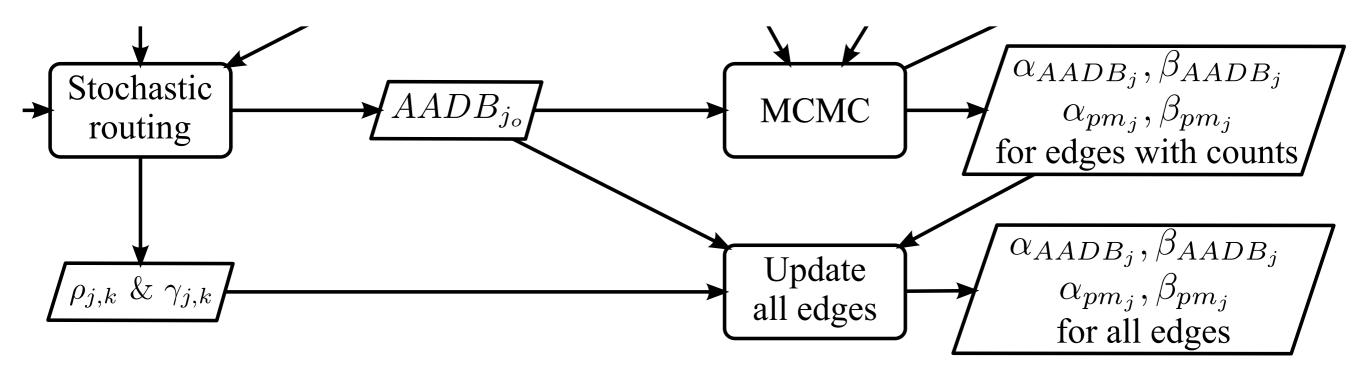
Hourly aggregated model and observations for a single day

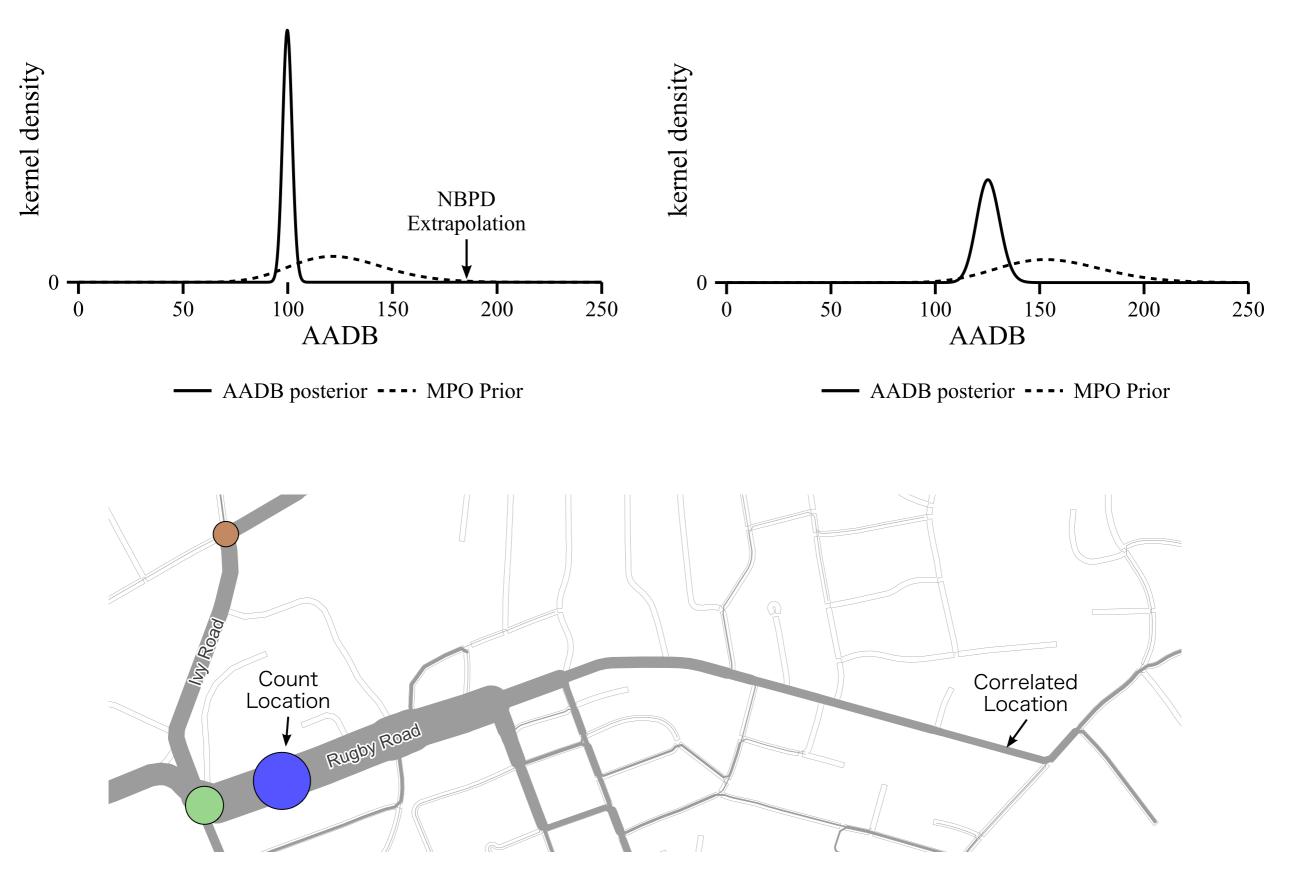


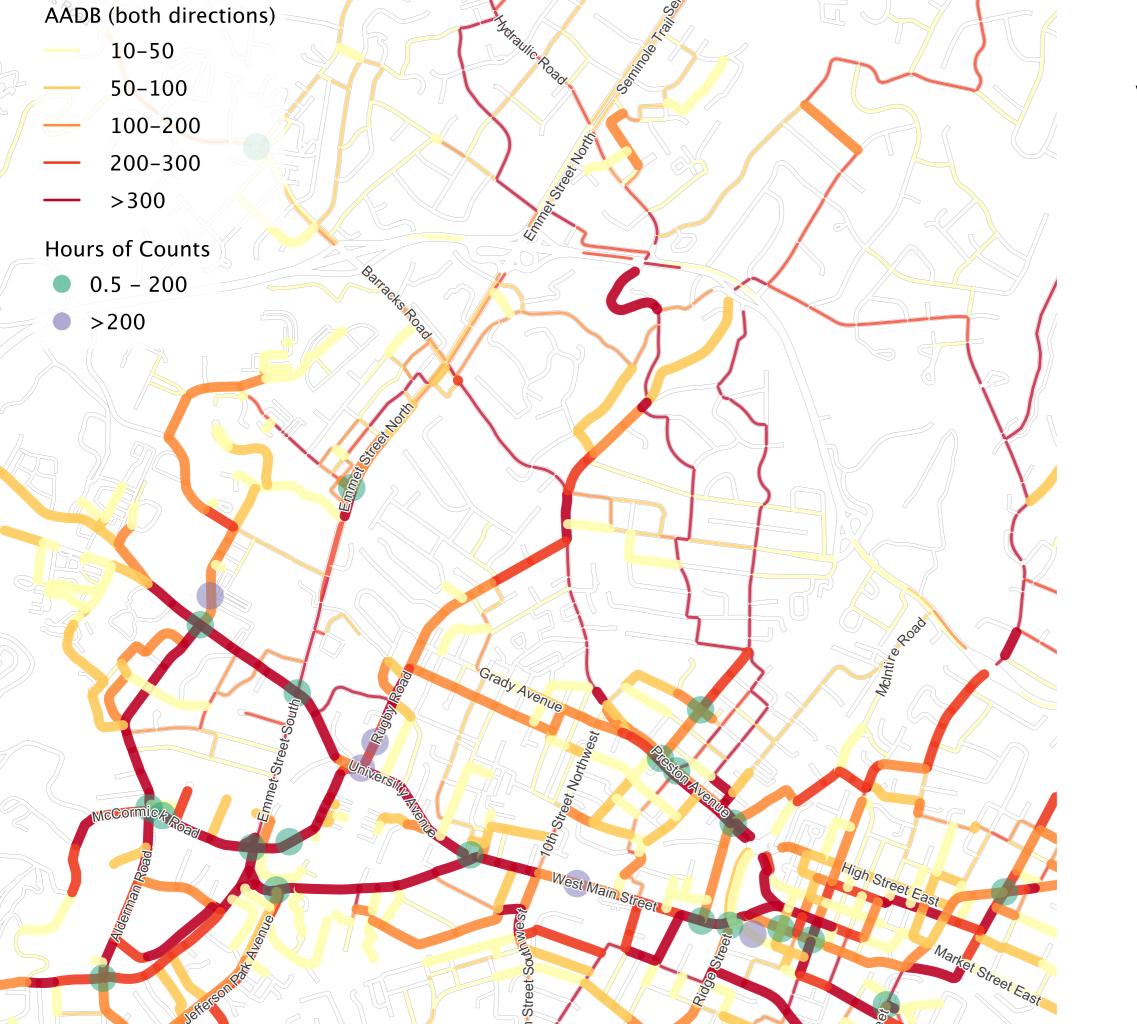
Spatial Factoring

- Expected bicycle usage on unobserved streets
- Correlations and volume ratios between all related pairs of directional streets are computed from the stochastic routes
- Bayesian updating of prior AADB estimates
 - using posterior AADB from temporal factoring modified by correlation and expected volume ratio
- Results are posterior distributions for AADB and morning peak proportion for every street

Information flow - Spatial Factoring







LowHigh

With these data

- Immediate visualization and planning
 - Evaluating current impacts of proposed infrastructure
- Feedback loops with Travel Demand Model
- Network-wide exposure values for safety prioritization
- Future scenario modeling using latent growth term(s)

Automated counts from traffic signal cameras

Vehicle tracking

- In-between complexity
 - simple presence detection
 - advanced real-time tracking
- super-pixel method to identify vehicles
- bounding box for classification and recognition in departing view
- speed and trajectory

Thank you | Questions?

alec.gosse@ccri.com

