

TPB Big Data Purchases

Zhuo Yang Transportation Data Analyst

Systems Performance, Operations and Technology Subcommittee February 15, 2024

Performance Measures and Conventional Data Collection

 Regional travel is frequently measured in trips and trip characteristics:

- Person Trips, Vehicle Trips, Vehicle Miles of Travel (VMT)
- Volumes
- Trip Origin/Destination (O/D)
- Trip Mode
- Trip Purpose
- Historically, these data are collected through traffic counters (humans and/or machines) and travel surveys.
 - Conventional methods are costly, take time to implement, and are not updated frequently as a result.

What is Big Data?

Defined:

Big Data is . . . an information asset with such high volume, velocity, and variety that specific technology and analytical methods are required for its transformation into value. 1

For transportation, sources can include:

- Passively collected data from mobile applications, including GPS traces and locationbased services
- Unmanned aircraft/space-based radar used to monitor traffic flow
- On-board vehicle sensors
- Traffic sensors and cameras
- Smart card data

¹De Mauro, Greco, Grimaldi, (2016) "A formal definition of Big Data based on its essential features," Library Review, Vol. 65 Issue 3, pp. 122-135, https://www.emerald.com/insight/content/doi/10.1108/LR-06-2015-0061

Big Data's Potential and Limitations

- Big Data can provide data more frequently, enabling more frequent analytics and decision support
- "Black Box" nature of Big Data is a concern—agencies/users unable to control changing data collection/processing methodologies, compromising potential for longitudinal comparisons
- Very costly—it is a risk to invest in a Big Data product without full knowledge of black box or control over the methods
- Data quality is difficult to verify

Big Data Evaluation

- COG/TPB hired an independent consultant, Kimley-Horn, to conduct an independent evaluation of Big Data products
- Purpose: Better understand (1) the state of the practice in applying Big Data in transportation planning and analysis and (2) which Big Data products have the potential to meet COG/TPB's programmatic needs
- Identify areas where COG/TPB can broaden its use of Big Data
- Completed in 2020

Big Data Evaluation - Scope

- Establish Study Work Group (membership, responsibilities, and meeting schedule) and study work plan
- Develop understanding of COG/TPB programmatic requirements and analytical/modeling processes
- Review state of the practice of Big Data use and applications by other MPOs
- Conduct an independent evaluation of Big Data sources for their potential in supporting
 TPB staff in meeting its programmatic requirements
- Recommend options and considerations for acquiring Big Data
- Prepare a final report

Data Needs & Research Areas

Research Area		Description
1	Travel Demand Forecasting	 Origin-Destination (O-D) information by mode with trip purpose/destination/origin type Region-wide speeds and volumes Region-wide signal delay estimation/queue length
2	Travel Demand Management	 Estimating network demand using historical data Survey of employer telework policies Forecasts of future telework policies
3	System Performance/ Congestion Management	 Monitoring network-wide congestion and performance Detailed network performance data for strategy development Event traffic data
4	Transit and Active Travel	 Impact of mode choice on network level of service (LOS) (scenario analysis) Monitoring real-time transit performance Monitoring active travel demand and delay

Data Needs & Research Areas (cont.)

Research Area		Description
5	Transportation Network Companies	 Improved understanding of usage and demand for TNCs: temporally, geographically, O-D patterns Socioeconomic and demographics of TNC riders Relationship between TNCs and transit (e.g., first/last mile problem)
6	Traffic Counts	 Obtaining permanent/temporary traffic count data Variability analysis of traffic counts (e.g., day-by-day) Methods to validate traffic counts collected in traditional methods Vehicle classification data
7	Connected and Automated Vehicles	 Impact of CAVs to vehicle occupancy Impact of CAVs on multimodal travel demand Impact of CAVs on infrastructure (e.g., parking) and revenue streams Available data from CAVs
8	Other Research Areas	 Regional freight and commercial vehicle travel forecasting Household survey data validation and supplementation O-D patterns based on population demographics Improved project selection

Big Data Evaluation Methodology

Evaluate value by research area from 4 input sources

Evaluations

Score each product based on 7 evaluation criteria

Source: Kimley-Horn

Consider TPB research areas

Report Components

Source: Kimley-Horn

What's Next?

4 location-based Big
Data products were
identified to meet half
or more of TPB's
programmatic
requirements

Kicking the Tires! TPB is acquiring 1-year subscriptions for all 4 to conduct analysis and evaluate

- Establish internal Big Data user group
- Determine which Big
 Data product to support
 TPB's requirements
 over the long term.

Zhuo Yang

Transportation Data Analyst (202) 962-3370 zyang@mwcog.org

mwcog.org

777 North Capitol Street NE, Suite 300 Washington, DC 20002

