Air quality, health, and equity in the Washington, DC region

Susan Anenberg, PhD

Metropolitan Washington Air Quality Committee Air and Climate Public Advisory Committee November 15, 2021

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

- Air pollution continues to place a large burden on public health globally and in the U.S.
- Air pollution-related health risks vary within cities, driven by concentrations and disease rates, contributing to health inequity
- Air pollution may worsen in the future under climate change
- Future air quality management requires a shift from engineering controls to reducing burning, with many LOCAL and IMMEDIATE benefits for public health

Efficacy of the Clean Air Act is observable from space

Nitrogen dioxide observed by the Ozone Monitoring Instrument: 20-60% decrease from 2005 to 2016

Courtesy Bryan Duncan, NASA

Evolution of air pollution exposure assessment

2004: Surface air quality monitors used to estimate 800,000 premature deaths associated with urban PM_{2.5} (Cohen et al. 2004) 2010: Global chemical transport model used to estimate 3.7 million PM_{2.5} deaths and 700,000 ozone deaths globally (Anenberg et al. 2010) 2012: Satellite observations, global chemical transport model, and ground observations combined to estimate 3.2 million PM_{2.5} deaths and 152,000 ozone deaths (Lim et al. 2012)

2016-2019: **methods refined** to estimate ~4 million PM_{2.5} deaths and 200,000 ozone deaths (Forouzanfar et al. 2016, etc.)

Future: geostationary satellites, lowcost sensors, mobile monitoring, ???

PM_{2.5} mortality in cities worldwide

Ozone mortality in cities worldwide

	Top 5 Cities with the Greatest Ozone-attributable Deaths by Region in 2017								
No.	Oceania (n=30)	Latin America & Caribbean (n=428)	Africa (n=653)	Europe (n=763)	N. America (n=302)	Asia (n=2941)			
1	Sydney, Australia (9.2)	Mexico City, Mexico (497.3)	Cairo, Egypt (498.6)	Madrid, Spain (306.2)	Los Angeles, CA, USA (829.5)	New Delhi, India (2840)			
2	Melbourne, Australia (8.6)	São Paulo, Brazil (314.9)	Johannesburg, South Africa (167.2)	Milan, Italy (165.9)	New York, NY, USA (389.5)	Shanghai, China (2619.6)			
3	Brisbane, Australia (3.3)	Buenos Aires, Argentina (128.2)	Kinshasa, DRC (109.7)	Naples, Italy (150.7)	Phoenix, AZ, USA (326)	Kolkata, India (2422.1)			
4	Perth, Australia (2.9)	Curitiba, Brazil (83.5)	Algiers, Algeria (66)	Athens, Greece (138.9)	Chicago, IL, USA (234.5)	Beijing, China (2364.7)			
5	Adelaide, Australia (2.5)	Ciudad Juárez, Mexico (61.6)	Mbuji-Mayi, DRC (65.7)	Guadalajara, Spain (128.5)	San Diego, CA, USA (186.7)	Guangzhou China (2179.5)			

NO₂ pollution is an important risk factor for pediatric asthma incidence

In 125 major cities, the percent of new pediatric asthma cases attributable to NO_2 :

- Ranged from 6% (Orlu, Nigeria) to 48% (Shanghai, China).
- Exceeded 20% in 92 cities, located in both developed and developing countries.

Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO₂ pollution: estimates from global datasets

Pattanun Achakulwisut, Michael Brauer, Perry Hystad, Susan C Anenberg

Summa

Background Paediatric asthma incidence is associated with exposure to traffic-related air pollution (TRAP), but the Lancet Planet Health 2019

۵

oa

Ratio: U.S. EPA

Ambient air quality guidelines and standards **GW**

Pollutant	Averaging time	WHO Air Quality Guideline 2021	WHO Air Quality Guideline 2005	U.S. EPA	EU	China Class 1 (2012)	China Class 2 (2012)
PM2.5 (ug/m3)	Annual	5	10	12	25	15	35
	24-hour	15	25	35	-	35	75
PM10 (ug/m3)	Annual	15	20	-	40	40	70
	24-hour	45	50	150	50	50	150
O3 (ug/m3)	Peak season	60	_	-	-	-	_
	8-hour	100	100	140	120	100	160
	1-hour	-	-	-	-	160	200
NO2 (ug/m3)	Annual	10	40	100	40	40	40
	24-hour	25	-	-	-	80	80
	1-hour	200	200	200	200	200	200

8

No NAAQS

1

Ozone trends – Washington, DC metro WASHINGTON D.C. - 6-month Averages of the Daily Maximum 8-hour Mixing Ratio Ozone Concentration (ppb) b. -100 Multi-model average concentrations (DeLang et al. 2021) Urban concentration averages (Malashock et al. in prep) Urban area (GHS-SMOD dataset) 03 Concentration (ppb) https://share.streamlit.io/nigel1998/urbanaq/master/UrbanAQ.py Year

WHO AQG 2021 = 30 ppb

EPA NAAQS = 53 ppb

NO₂ trends – Washington, DC metro

WASHINGTON D.C. - Annual Average NO₂ Concentration (ppb)

Estimating disease burden from air pollution

Air pollution inequity in Washington, DC

Temporal trend in PM_{2.5}-attributable mortality

Satellite-derived PM_{2.5} concentrations from Hammer et al. (2020) Disease rates from DC Health *Castillo et al., GeoHealth, forthcoming* Spatial pattern, links with demographics

Contributions to air pollution in DC for 2011

Nawaz et al. submitted. Emission to concentration sensitivities from GEOS-Chem model

2011 Daily PM_{2.5} Contributions in DC

	Sectors
отн	Other Sectors
RES	Residential
SF	Surface Emissions
NON	Non-road
IND	Industry
ONR	On-road
EGU	Energy Generation
AG	Agriculture

Nawaz et al. submitted. Emission to concentration sensitivities from GEOS-Chem model

TROPOMI NO₂ can identify local pollution relatively well

Goldberg et al., 2021, <u>Earth's Future</u> Open Access

Learning from COVID-19 lockdowns

r n

- What would this look like if meteorology was "normalized" out?
- What does this reveal about environmental justice issues related to air quality?
- How did varying degrees of social distancing and urban transportation changes cause these NO₂ decreases?

RESEARCH ARTICLE 10.1029/2020EF001665

Key Points:

 The high instrument sensitivity of Tropospheric Monitoring Instrument (TROPOMI) can measure NO₂ pollution with unprecedented clarity compared to predecessor instruments

TROPOMI NO₂ in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO₂ Concentrations

Daniel L. Goldberg^{1,2}, Susan C. Anenberg¹, Gaige Hunter Kerr¹, Arash Mohegh¹, Zifeng Lu², and David G. Streets²,

Natural influences on TROPOMI NO₂

Geophysical Research Letters

RESEARCH LETTER 10.1029/2020GL089269

Linking health, society and

Special Section: The COVID-19 pandemic: Disentangling the Impact of the COVID-19 Lockdowns on Urban NO₂ From Natural Variability

Daniel L. Goldberg^{1,2}, Susan C. Anenberg¹, Debora Griffin³, Chris A. McLinden³, Zifeng Lu², and David G. Streets²

Disentangling the impact of the COVID-19 lockdowns on urban NO₂ from natural variability

- Method 0 TROPOMI NO₂ change 2020 only (Jan-Feb vs. Mar 15-Apr 30)
- Method 1 account for season TROPOMI NO₂ 2019 vs. 2020 (Mar 15 – Apr 30)
- Method 2 account for season & meteorology Normalize TROPOMI NO₂ by meteorology, 2019 v. 2020 (Mar 15 – Apr 30)
- Method 3 account for season & meteorology TROPOMI NO₂ vs. simulated "normal" times, 2020 only (Mar 15 – Apr 30)

Geophysical Research Letters

RESEARCH LETTER 10.1029/2020GL089269 Disentangling the Impact of the COVID-19 Lockdowns on Urban NO₂ From Natural Variability

Special Section: The COVID-19 pandemic: Linking health, society and Daniel L. Goldberg^{1,2} ^(D), Susan C. Anenberg¹ ^(D), Debora Griffin³ ^(D), Chris A. McLinden³ ^(D), Zifeng Lu² ^(D), and David G. Streets² ^(D)

Figure created by Gaige Kerr

During COVID-19 precautions, less educated, minority communities experience the largest decreases in NO₂

COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution

Gaige Hunter Kerr^{a,1}[®], Daniel L. Goldberg^{a,b}[®], and Susan C. Anenberg^a

*Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052; and ^bEnergy Systems Division, Argonne National Laboratory, Lemont, IL 60439

Edited by Susan Solomon, Massachusetts Institute of Technology, Cambridge, MA, and approved June 11, 2021 (received for review October 26, 2020)

The unequal spatial distribution of ambient nitrogen dioxide sured from satellite instruments (21, 24–27) over the United (NO₂), an air pollutant related to traffic, leads to higher expo

(d) Ethnic background [%]

- 38	62
- 24	76
- 18	82
Hispanic	Non-Hispanic

(f) Educational attainment [%]

High school College	Graduate
- 35 52	13
- <mark>38</mark> 48	14
- <mark>43</mark> 45	13

(h) Household vehicle ownership [%]

19			81			
13		87				
8	92					

None One or more

Largest gains (top decile in urban areas) Average (middle decile in urban areas) Smallest gains (bottom decile in urban areas)

> Baseline: 13 March – 13 June 2019 Lockdown: 13 March – 13 June 2020

COVID-19 lockdowns did not eliminate NO₂ disparities by race

COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution

Gaige Hunter Kerr^{a,1}⁽⁰⁾, Daniel L. Goldberg^{a,b}⁽⁰⁾, and Susan C. Anenberg^a⁽⁰⁾

^aDepartment of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052 and ^bEnergy Systems Division, Argonne National Laboratory. Lemont. IL 60439

Edited by Susan Solomon, Massachusetts Institute of Technology, Cambridge, MA, and approved June 11, 2021 (received for review October 26, 2020)

The unequal spatial distribution of ambient nitrogen dioxide (NO₂), an air pollutant related to traffic, leads to higher expo-

sured from satellite instruments (21, 24-27) over the United

- In many cities, the post-lockdown NO_2 amounts in the least white communities are still ~50% larger than the pre-lockdown NO_2 amounts in the most white communities
- Also holds for income and educational attainment

Using satellites to link NO₂ disparities to sources

Figure credit: Dan Goldberg and Gaige Kerr

TROPOMI NO₂ oversampled to ~1 × 1 km² over the Baltimore-Washington metropolitan region for March 13-September 13, 2020. Only retrievals exceeding a quality assurance flag > 0.75 are included. Colorbar saturates at (left) 2.75×10^{15} and (right) 2.5 × 10^{15} molecules cm⁻² for greater contrast.

Air pollution, climate change, and health are interconnected

Anenberg et al., Earth's Future 2019

Time to rethink air quality management

From "end of pipe" engineering controls

Catalytic converters, Diesel particulate filters

Scrubbers

To burning less stuff in the first place

Active transportation

Zero emission energy

Energy efficiency

New decision-support tool: Pathways-AQ

Integrating AQ into urban CAPs

- Air pollution continues to place a large burden on public health globally and in the U.S.
- Air pollution-related health risks vary within cities, driven by concentrations and disease rates, contributing to health inequity
- Air pollution may worsen in the future under climate change
- Future air quality management requires a shift from engineering controls to reducing burning, with many LOCAL and IMMEDIATE benefits for public health
- We look forward to working with partners across the DC region and beyond to reduce air pollution, eliminate environmental and health injustice, and slow climate change.