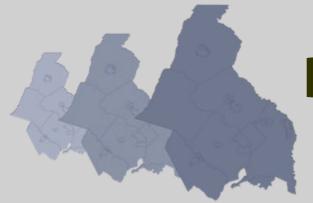

TPB SCENARIO STUDY Development of "What Would It Take?"

Monica Bansal
Department of Transportation Planning

Presentation to the TPB Scenario Study Task Force


What Would it Take? Scenario Goals

COG Climate Change Steering Committee goals:

2050

80% reduction in CO2 below 2005 levels

Building the ScenariosWhat Would it Take?

Three categories of strategies to reduce mobile CO2 emissions

Fuel Efficiency

Beyond CAFE standards [currently 35 mpg by 2020]

Fuel Carbon Intensity

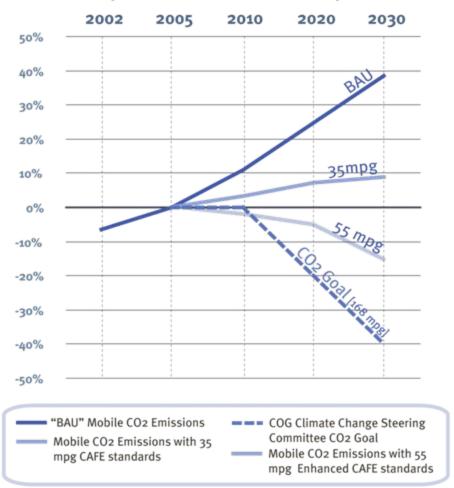
Alternative fuels (biofuels, hydrogen, electricity)

Vehicle technology (hybrid engine technology)

Reduce VMT

Changes in land use development

Changes in travel behavior

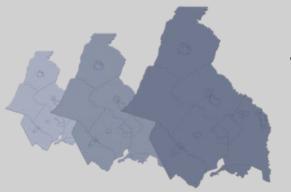

Changes in prices for travel

What Would it Take with Fuel Efficiency?

Fuel Efficiency

Beyond CAFE standards [currently 35 mpg by 2020] Mobile CO2 Projections and Goals [8-hour Ozone Non-Attainment Area]

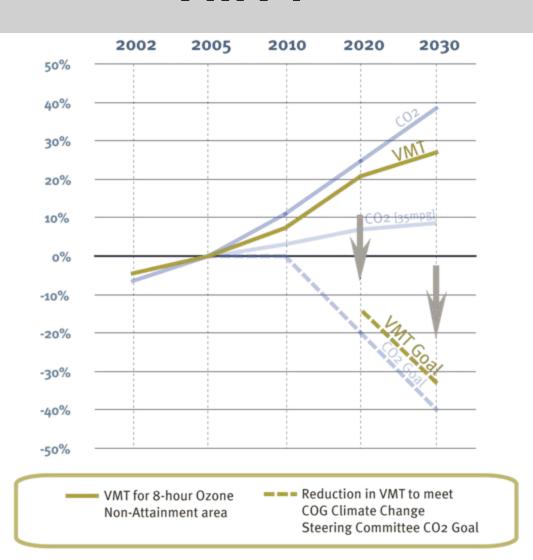
What Would it Take with **Alternative Fuels?**


Fuel Carbon Intensity

Alternative fuels (biofuels, hydrogen, electricity)

Vehicle technology (hybrid engine technology)

How would this look with lifecycle emissions for the region?

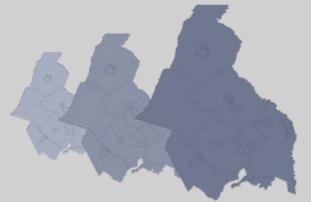

What Would it Take with VMT?

Reduce VMT

Changes in land use development

Changes in travel behavior

Changes in prices for travel



Cost-Effectiveness

Current studies put the price threshold somewhere between \$30 and \$50 per ton of CO2 abated.

Initial analysis of cost-effectiveness of Transportation Emissions Reduction Measures

		CO ₂ Cost
Number	Category Description	Effectiveness
		Range *
1	Access Improvements to Transit/ HOV	\$100 to \$400
2	Bicycle / Pedesrian projects	\$50 to \$100
3	Transit Service improvements	\$100 to \$800
4	Rideshare Assistance Programs	\$30 to \$300
5	Park & Ride Lots (Transit and HOV)	\$100 to \$500
6	Telecommute Programs	\$10 to \$40
7	Traffic Improvements/TSM	In Progress
8	Engine Technology/Alternative Fuel Programs	In Progress

Prioritizing Strategies

In addition to cost-effectiveness, interventions can be organized by timeframe for implementation and realization of benefits

To mitigate the effects of global warming, important to get GHG reductions as early as possible

Short Term

"Low-hanging fruit" that are relatively fast and cost-effective (fuel economy packages)

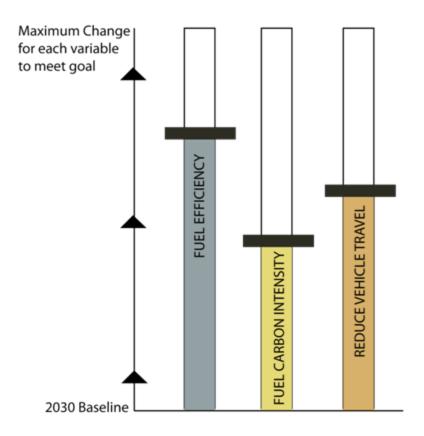
Medium Term

Major transit investments

Advanced vehicle technologies

Long Term

Major changes to current land use patterns


Emerging technologies and energy sources₈

Scenario Outcomes

Different combinations of interventions can be assessed for cost-effectiveness and feasibility:

A series of "sliders"

