Maryland Department of the Environment MDE – regulatory Agency with a mission to protect and restore the environment for the health and well-being of all Marylanders #### Admins: - Office of the Secretary - Air and Radiation - Water and Science - Land and Materials - Operations ### Regulatory Ambient Air Monitoring - CAA of 1970 and following amendments - NAAQS CO, Pb, NO2, O3, PM2.5 & 10, SO2 - Attainment? - Consistency across the US | Pollutant | | Primary/
Secondary | Averaging
Time | Level | Form | | |-------------------------------------|-------------------|-----------------------------|----------------------------|------------------------|---|--| | Carbon Monoxide (CO) | | primary | 8 hours | 9 ppm | Not to be exceeded more than once per year | | | | | | 1 hour | 35 ppm | | | | Lead (Pb) | | primary
and
secondary | Rolling 3
month average | 0.15 µg/m³ | Not to be exceeded | | | Nitrogen Dioxide (NO ₂) | | primary | 1 hour | 100 ppb | 98th percentile of 1-hour daily maximum concentrations, averaged over 3 years | | | | | primary
and
secondary | 1 year | 53 ppb | Annual Mean | | | Ozone (O ₃) | | primary
and
secondary | 8 hours | 0.070 ppm | Annual fourth-highest daily maximum
8-hour concentration, averaged over 3
years | | | | PM _{2.5} | primary | 1 year | 12.0 µg/m ³ | annual mean, averaged over 3 years | | | | | secondary | 1 year | 15.0 µg/m ³ | annual mean, averaged over 3 years | | | Particle Pollution
(PM) | | primary
and
secondary | 24 hours | 35 μg/m ³ | 98th percentile, averaged over 3 years | | | | PM ₁₀ | primary
and
secondary | 24 hours | 150 µg/m³ | Not to be exceeded more than once per year on average over 3 years | | | Sulfur Dioxide (SO ₂) | | primary | 1 hour | 75 ppb | 99th percentile of 1-hour daily maximum concentrations, averaged over 3 years | | | | | secondary | 3 hours | 0.5 ppm | Not to be exceeded more than once per year | | Source: EPA.gov ### Regulatory Ambient Air Monitoring - Monitoring Regulations - Title 40 CFR Part 50 National Primary and Secondary Ambient Air Quality Standards - Title 40 CFR Part 53 Ambient Air Monitoring Reference and Equivalent Methods - Title 40 CFR Part 58 – Ambient Air Quality Surveillance - Regulations for measurement method, siting, operations, data collection, quality assurance review and data submission ### Monitoring Methods & Instrumentation - Carbon Monoxide Non-dispersive infrared photometry / Gas Filter Correlation (Beer's Law) - Ozone UV photometry (attenuation) - Nitrogen Dioxide chemiluminescence, UV photolytic, cavity attenuated phase shift spectroscopy (CAPS) - Sulfur dioxide pulsed fluorescence - PM-gravimetric, beta attenuation, light scattering - Toxics TO-11, TO-15, PAMS ### **Siting Regulations** Table 7-2 Summary of Probe and Monitoring Path Siting Criteria | Pollutant | Scale (maximum
monitoring path
length, meters) | Height from
ground to probe,
inlet or 80% of
monitoring path ¹
(meters) | Horizontal and vertical distants from supporting structures ² to probe, inlet or 90% of monitoring path ¹ (meters) | Distance from
trees to probe,
inlet or 90% of
monitoring
path ¹ (meters) | istance from
redways to probe,
in et or monitoring
p. h ¹ (meters) | |---|--|--|--|---|--| | SO ₂ 3,4,5,6 | Middle (300 m)
Neighborhood Urban,
and Regional (1 km). | 2–15 | >1 | 10 | N/A | | CO 4,5,7 | Micro, Middle (300
m), Neighborhood (1
km). | 3 ±1/2: 2–15 | >1 | >10 | 2-10; see Table 7-3 of
this section for middle
and neighborhood scales. | | NO ₂ , O ₃ ^{3,4,5} | Middle (300 m)
Neighborhood, Urban,
and Regional (1 km). | 2–15 | >1 | > 10 | See Table 7-3 of this section for all scales. | | Ozone
precursors
(for
PAMS) 3,4,5. | Neighborhood and
Urban (1 km) | 2–15 | >1 | > 10 | | | PM, Pb
3,4,5,6,8 | Micro: Middle,
Neighborhood,
Urban and Regional. | 2–7 (micro);
2–7 (middle PM10-2.5);
2–15 (all other scales). | > 2 (all scales,
horizontal distance
only). | > 10 (all scales). | 2–10 (micro); see Figure
7.3 of this section for all
other scales | Table 7-3 Minimum Separation Distance Between Roadways and Sampling Probes or Monitoring Paths at Neighborhood and Urban Scales for O₃, Oxides of Nitrogen (NO, NO₂, NO₃, NO_y) and CO | Paths at Neighborhood and Urban Scales for O ₃ , Oxides of Nitrogen (NO, NO ₂ , NO _x , NO _y) and C | | | | | |---|---|---|--------------------------------|--| | Roadway ave. daily
traffic vehicles per
day | O ₃ and Oxides of N
Neighborhood
& Urban ¹ (meters) | O ₃ and Oxides of N
Neighborhood.
& Urban ^{1& 2} (meters) | CO
Neighborhood
(meters) | | | ≤ 1,000 | 10 | 10 | | | | 10,000 | 10 | 20 | | | | ≤ 10,000 | | | 10 | | | 15,000 | 20 | 30 | 25 | | | 20,000 | 30 | 40 | 45 | | | 30,000 | | | | | | 40,000 | 50 | 60 | då sumå erdibble stand | | | 50,000 | | | | | | ≥ 60,000 | | 11115 | | | | 70,000 | 100 | 100 | | | Distance from the edge of the nearest traffic lane. The distance for intermedi interpolated from the table values based on the actual traffic count. 250 >110,000 ² Applicable for ozone monitors whose placement has not already been approved as of December 18, 2006. #### Site and Instrumentation costs - Site costs \$150k \$250k one-time expenditure - Shelters - Analyzers - Calibration and dilution systems (including tanks, regulators) - Comm systems - Data management software - Land rent - Monitoring objective - Continued operation ### MDE's 2024 Regulatory Air Monitoring Network measured, ~110 total instruments (over 500 pieces including ancillary equipment), 6 field operators! #### Pollutant site requirements Figure 1-1 Map showing MSAs in Maryland. A - Based on tables available at https://www.epa.gov/air-trends/air-quality-design-values. All areas had their maximum sites >= 85% Ozone NAAOS ⁻⁻ indicates that no part of that State exists in that MSA. # **Quality Assurance Requirements** | PM _{2.5} Filter Based Local Conditions Validation Template | | | | | | | |---|--|--|--|--|--|--| | 1) Criteria (PM2.5 LC) | 2) Frequency | 3) Acceptable Range | Information /Action | | | | | CRITICAL CRITERIA- PM _{2.5} Filter Based Local Conditions | | | | | | | | Field Activities | | | | | | | | Sampler/Monitor | NA | Meets requirements listed in FRM/FEM/ARM | 1) 40 CFR Part 58 App C Sec. 2.1
2) NA | | | | | Filter Holding Times (pre sampling) - , = 30 days before sampling</td | | | | | | | | Sample Re | Sample Recovery Times - = 7 days 9 hours from end of sampling period</td | | | | | | | Sampling Period (including multiple power failures) | all filters | 1380-1500 minutes, or
if value < 1380 and exceedance of NAAQS ^{1/}
midnight to midnight local standard time | 1, 2 and 3) 40 CFR Part 50 App L Sec. 3,3 and 40 CFR Part 50 App N Sec. 1 for the midnight to midnight local standard time requirement | | | | | Flow Rate Verification – every 30 days, <+/- 4.1% of flow standard | | | | | | | | Variability in Flow Rate | every 24 hours of op | CV ≤ 2% | 1, 2 and 3) 40 CFR Part 50, App L Sec. 7.4.3.2 | | | | | One-point Flow Rate Verification | every 30 days each seperated
by 14 days | $\leq \pm 4.1\%$ of transfer standard
$\leq \pm 5.1\%$ of flow rate design value | 1, 2 and 3) 40 CFR Part 50, App L, Sec. 9.2.5 and
7.4.3.1 and 40 CFR Part 58, Appendix A Sec. 3.2.1 | | | | | Design Flow Rate Adjustment | After multi-point calibration or | < + 2.1% of design flow rate | 1, 2 and 3) 40 CFR Part 50, App. L, Sec. 9.2.6 | | | | | Laboratory Criteria – | | | | | | | | Post Sampling Weighing requirements, Lab Temp and RH limits, Microbalance Auto- | | | | | | | | Calibration prior to weighing | | | | | | | | | maintenance | | 3) 40 CFR Part 50, App. L, Sec. 7.4.6.1 | | | | | Internal Leak Check | If failure of external leak check | < 80.1 mL/min | 1) 40 CFR Part 50, App. L, Sec. 7.4.6.2
2) Method 2-12, Sec. 7.4.4
3) 40 CFR Part 50, App. L, Sec. 7.4.6.2 | | | | | Laboratory Activities | | | | | | | #### Additional Regulatory Data Uses ## The Air Monitoring Program performs the following functions: - Data Quality Control and Assurance - Section Sectio - Data review, validation & reporting to Air Quality System (AQS) - Detailed SOPs and QAPPs for each pollutant, Annual Network Plan and 5-Year Network Assessment - Audits internal and EPA audits of instrumentation performance. - Data Analysis - DV calculations, trends, summary statistics, exception events, quality of air summaries - IMPROVE, Haze Cams, Environmental Justice, Lower Eastern Shore Monitoring Project, Unified Ceilometer Network Support - Conceptual model development, ozone plume extent visualizations - Episode analyses, attainment demonstrations - Daily Air Quality Forecast and AQI Reporting - Analytical Laboratory support 13 sites throughout Region III - Coordination of Meteorological, Dispersion and Photochemical Modeling - SIP Attainment Demonstrations and Sensitivity Runs - Permit Application Support and Review - Special Initiatives / Studies - · Collaborations with EPA, NOAA, NASA, Universities, Communities Curtis & Church MOD-97 PM_{2.5} Patterns ### Air Quality Trends 2002 - 2023 - Annual Pollutant Design Values compared to their respective National Ambient Air Quality Standard (NAAQS) - Criteria pollutants overall have shown significant declines over the past 20 years Source: 2024 Maryland Clean Air Progress Report #### Summer Smoke in 2023 Forest fires in Early June 2023 PM2.5 exceedances, June 7,8, 28, 29, 30, 7/1 (PA only) and very close but no exceedances 7/17 and 7/18 AirNow Interactive Map of Air Quality