CBP MODELING UPDATE

Mukhtar Ibrahim and Karl Berger, COG staff

WRTC Meeting Sept. 9, 2022

Today's Presentation

- Showing Bay Program watershed model results through 2021
- All results use CAST 21 (Chesapeake Assessment Scenario Tool) model framework
 - Mostly focus on total nitrogen (TN) edge of tide (EoT) results
- Bay Program partners have disagreed on the use of CAST 21
 - Controversy over newly revised ag and urban fertilizer numbers using AAPFCO data (resulting in 6-million-pound TN load increase)
 - Emerging consensus to address these loads post 2025 using new watershed model -- Phase 7

Today's Themes

- CAST controversy largely about loads from agriculture
 - Wastewater loads are measured, not modeled
 - Urban runoff loads are not that different in the various CAST versions
- Agricultural load reductions are proving very difficult to achieve
 - Issues include scientific and economic considerations
- Need for urban regions to maintain consensus on what we have been doing:
 - Achieved wastewater reduction goals and continue stormwater BMP implementation while addressing new flood resilience issues

CAST 21 Versus CAST 19

Newest version of CAST would correct for omissions in earlier versions

Change in Nutrient Loads to the Chesapeake Bay

Differences between CAST versions by source; 2021 Progress scenario

		Nitrogen Loads					
		CAST19	CAST19	CAST21	CAST19	CAST19 to CAST21	CAST19 to CAST21
		Current	Corrected Fertilizer	AllUpdates	Change w/ Corrected	Change From Other	Total Change
			(2013-2014)		Fertilizer Data	Data and Method Updates	From Updates
		(M lbs)	(M lbs)	(M lbs)	(M lbs)	(M lbs)	(M lbs)
CB Watershed	Agriculture	117.059	121.779	122.632	4.721	0.853	5.573
CB Watershed	Developed	40.269	40.269	40.359	0	0.091	0.091
CB Watershed	Wastewater	29.969	29.969	29.969	0	0	0
CB Watershed	Septic	7.845	7.845	7.792	0	-0.053	-0.053
CB Watershed	Natural	45.311	45.558	45.595	0.247	0.036	0.283
CB Watershed	AllSources	240.454	245.421	246.348	4.967	0.927	5.894
		Phosphorus Loads					
		CAST19	CAST19	CAST21	CAST19	CAST19 to CAST21	CAST19 to CAST21
		Current	Corrected Fertilizer	AllUpdates	Change w/ Corrected	Change From Other	Total Change
			(2013-2014)		Fertilizer Data	Data and Method Updates	From Updates
		(M lbs)	(M lbs)	(M lbs)	(M lbs)	(M lbs)	(M lbs)
CB Watershed	Agriculture	4.076	4.190	4.041	0.113	-0.149	-0.035
CB Watershed	Developed	2.648	2.648	2.181	0	-0.467	-0.467
CB Watershed	Wastewater	2.317	2.317	2.317	0	0	0
CB Watershed	Septic	0.004	0.004	0.004	0	0	0
CB Watershed	Natural	5.667	5.701	5.506	0.034	-0.195	-0.161
CB Watershed	AllSources	14.713	14.860	14.050	0.147	-0.810	-0.663

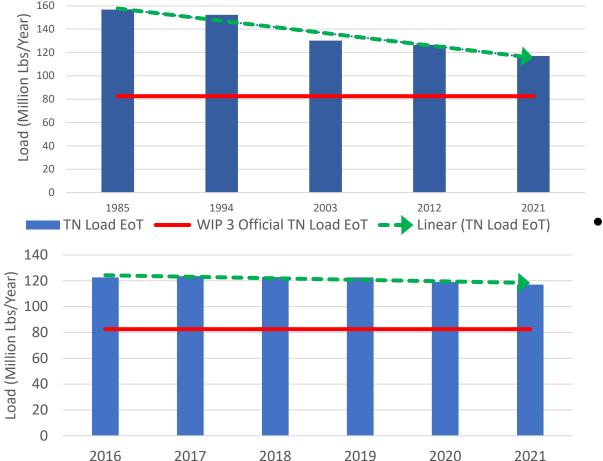
Slide courtesy of Chesapeake Bay Program

TN Rate of Progress

- Currently predicting achievement of TN
 2025 WIP target in
 2033 -- ??? -- at current rate of progress

Figure 1. Modeled Nitrogen Loads to the Chesapeake Bay (1985-2021). Source: <u>Chesapeake Progress</u>.

Graphic from Bay Program's Aug. 12 draft of Biennial Strategy Review



TN Long- and Short-Term Trends – All Sources

- Most of TN
 reduction from 1985
 – 2015 came from
 wastewater
- Reduction trajectory in recent years much lower, reflecting little progress by other sectors

TN Long- and Short-Term Trends - Ag

Much of Ag TN reduction from 1985-2015 was result of less acres

Lower progress from 2016-2021 reflects difficulty of reducing ag loads

180

TP Rate of Progress

- Bay Program
 acknowledges "off
 course" for TP reduction
 by 2025
- Currently predicting
 achievement of TP 2025
 WIP target in 2028 -- ??? at current rate of progress

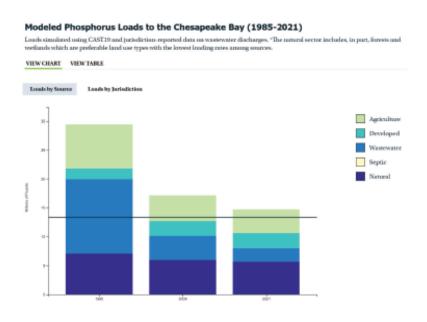
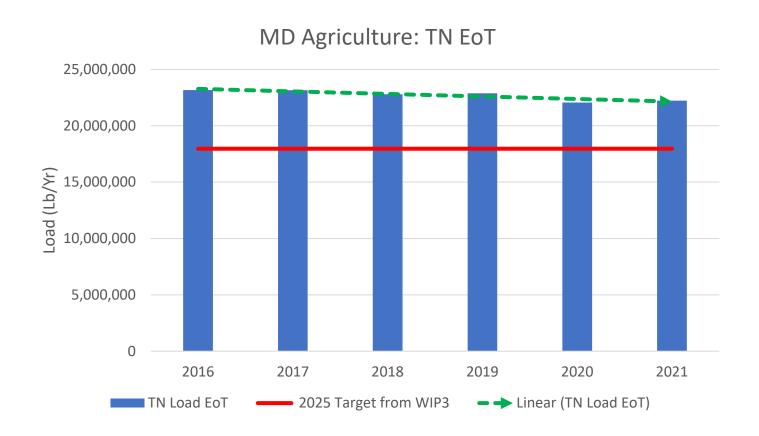


Figure 2. Modeled Phosphorus Loads to the Chesapeake Bay (1985-2021). Source: Chesapeake Progress.

Graphic from Bay Program's Aug. 12 draft of Biennial Strategy Review

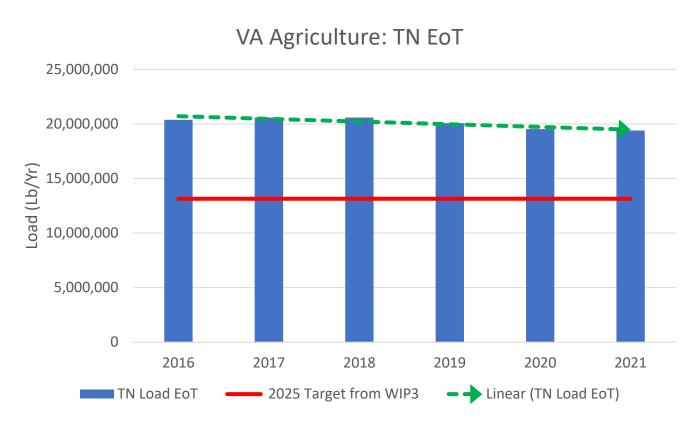
TP Long and Short-Term Trend – All Sources

- Much of TP
 reduction from 1985
 – 2015 came from
 wastewater,
 although ag also
 made progress
- Reduction trajectory in recent years is lower, but target is reachable


TP Long- and Short-Term Trends - Ag

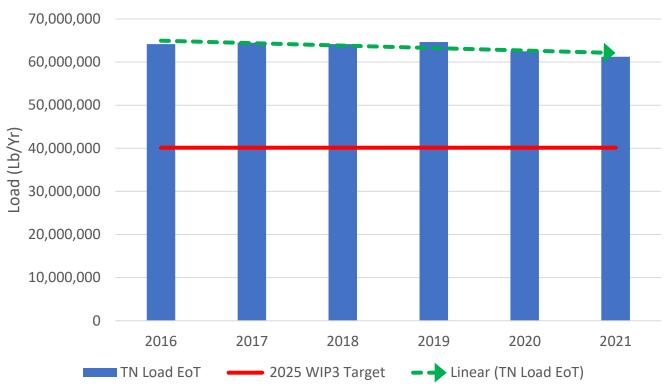
- Some of Ag TP reduction from 1985-2015 was result of less acres
- Although progress trajectory from 2016-2021 is lower than before, Ag may eventually reach 2025 WIP target

Recent Ag Trend - Maryland

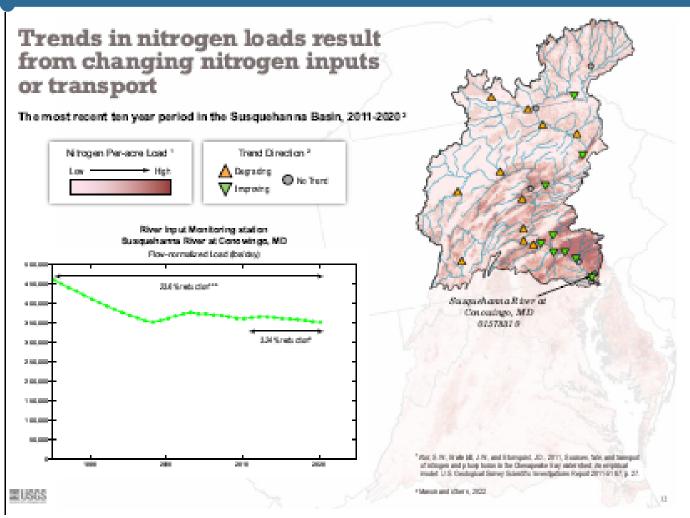

Will not meet 2025 WIP target based on recent trajectory

Recent Ag Trend - Virginia

Will not meet 2025 WIP target based on recent trajectory

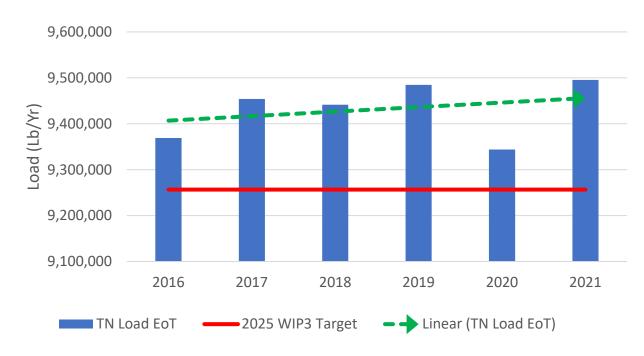


Recent Ag Trend - Pennsylvania


Will not meet 2025 WIP target based on recent trajectory

Monitoring Results - Pennsylvania

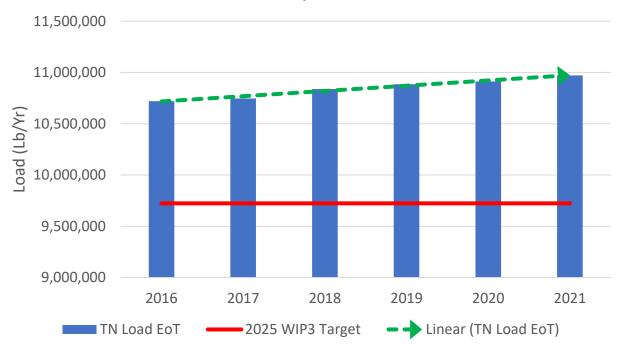
Slide presented by Chris Mason of USGS showing most recent results from Bay Program's nontidal monitoring network


https://www.usgs .gov/centers/ches apeake-bayactivities/science /chesapeake-bay

Recent Developed Trend - Maryland

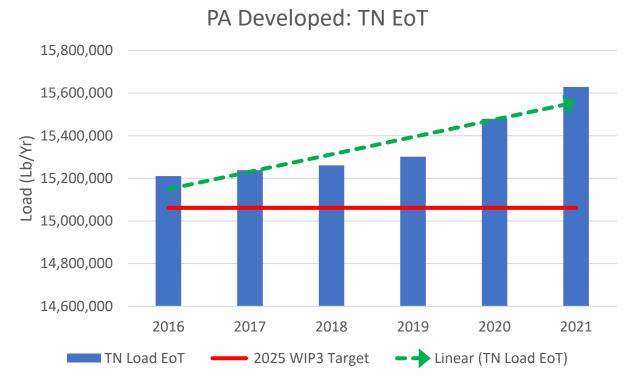
Loads continue to increase (up 1.3%) slightly more than increase in acres (up 0.9%)

MD Developed: TN EoT


Caveat: load numbers do not include impact of stream restoration BMPs

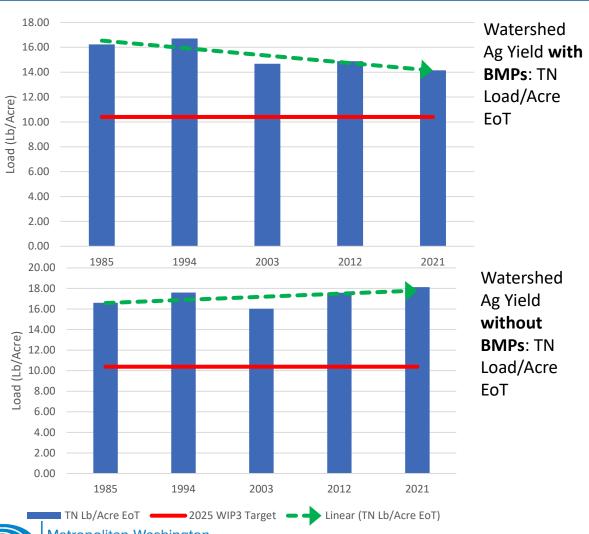
Recent Developed Trend - Virginia

Loads continue to increase (up 2.3%) slightly less than increase in acres (up 2.8%)



Caveat: load numbers do not include impact of stream restoration BMPs

Recent Developed Trend - Pennsylvania


Loads continue to increase (up 2.7%) slightly more than increase in acres (up 0.9%)

Caveat: load numbers do not include impact of stream restoration BMPs

Ag: A Closer Look

Ag is making progress if you consider increase in inputs of fertilizer and manure over time

What's Happening with Ag

- Ag acres continue to decline across entire Bay watershed
 - Down 14.3 % from 1985 to 2021
- Manure inputs declined until about 2010, but have increased slightly since then
 - Total pounds of manure down 6.1 % from 1985 2021
 - But pounds of manure/acre up 10%
- Fertilizer input/acre has increased as yields have increased
- Ag BMPs have had an impact, but reductions have been offset by increased intensity of ag production

Take Home Points

- Restoration effort will not meet target reductions in 2025
 - Wastewater only sector that is meeting or exceeding 2025 WIP targets; attainment of 2025 WIP targets by MD, VA and DC all depend on wastewater sector exceeding its WIP goals
 - Urban stormwater loads have increased with increase in acres
 - Ag loads have not decreased with decrease in acres
- Climate change and dynamic equilibrium in lower
 Susquehanna dam system (aka: Conowingo) also make attainment harder to achieve (more reductions are needed)
- New accounting, new WIP likely in 2025-2027
 - EPA and state pressure to reduce urban loads will continue post
 2025
 - Wastewater sector may face pressure to do more as capacity reserved for future growth is used post 2025

