

POWERED BY ENERGY EFFICIENCY— FUELED BY ENERGY CONSERVATION COG 2006 Energy Strategic Plan [Full Report]

Metropolitan Washington Council of Governments

777 North Capitol Street, NE, Suite 300 Washington, D.C. 20002 <u>www.mwcog.org</u> This report was prepared for the Metropolitan Washington Council of Governments Energy Advisory Committee by

Jerome Paige and Associates 1691 Tamarack St. NW Washington, DC 20012-1005 202-726-3081 (voice) jpaige@paigeandassociates.com (email) http://www.paigeandassociates.com

The bulk of the research and analysis was completed by December 2005. Editing and modifications based on the review process were made through March 2006.

EXECUTIVE SUMMARY: REDUCING ENERGY DEPENDENCE IN THE NEW	
ENERGY ERA	1
1. Transition to a New Energy Era: Recommendations	2
2. Regional Energy Policy & Planning: Recommendations	2
3. Tri-State Energy Trends: Recommendations	3
4. Motor Fuel Trends: Recommendations	3
5. Household Fuel Trends: Recommendations	3
6. Regional Energy Data Approach to Policymaking: Recommendations	4
7. Best Practices: Recommendations	4
8. Summary/List of Frameworks: Recommendations	6
1. TRANSITION TO A NEW ENERGY ERA	7
Findings & Recommendations	7
A New Energy Environment	7
Findings: Vehicles, Appliances, Buildings, and Behavior	8
Findings: Evolution of a MWCOG Policy Framework	. 10
Transition to a New Energy Era: Discussion	
The New Energy Era	
The Challenge: Transitioning to a New Energy Era	. 13
The Nominal versus Real Price Conundrum	
Direct Energy Consumption the Last Thing to Fall	
Price Inelasticity: The High Costs of Adjustment	
Energy and the Environment	
Regional Economic Competitiveness Effects	
Rising Energy Prices & Supply	
"Peak Oil Debate"	
Summary	
2. ENERGY POLICY AND PLANNING IN THE REGION 1979-2005: FINDINGS,	
RECOMMENDATIONS & DISCUSSIONS	
Findings: Tri-StateEnergy Policies & Plans	
Findings: Federal Energy Policy Act 2005	. 19
Energy Policy and Planning In The Region 1979-2005: Discussion	
MWCOG: Policies & Plans 1979-2004	
Washington Metropolitan Area Tri-State Energy Emergency Coordination Agreeme	
March 21, 1979	
Energy Conservation and Management Plan, 1979	
Regional Energy Consumption - 1980	
Emergency Energy Conservation Act, November 1981	
Regional Strategic Energy Assessment - 1997	
Performance Contracting	
Greening Initiatives	
Homeland Security	
State & Local Jurisdictions: Polices and Plans	
The Virginia Energy Plan	
District of Columbia Energy Office (DCEO)	. 29

	State of Maryland: Annual Reports & Guides	. 31
	The Tri-State Area	. 32
	Summary	. 32
3.	TRI-STATE ENERGY TRENDS, 1997-2001	
	Findings: Tri-StateEnergy Trends	
	Recommendations	
	Tri-State Energy Trends: Discussion	. 34
	Summary	
4.	MOTOR FUEL CONSUMPTION, PRICE & EXPENDITURE TRENDS	. 44
	Findings	
	Recommendations	. 46
	Discussion	. 46
	A Policy Framework for Reducing the Consumption of Motor Fuels	. 47
	Regional Gasoline Prices	
	Price Outlook	
	Effect of Vehicle Efficiency on Gallons of Gasoline Consumed	. 53
	Effect of Vehicle Efficiency on Gasoline Operating Costs	
	Effect of Reduction of Gasoline on Motor Fuel Tax Collections	
	Effects of Motor Fuel Taxes to Shift Demand: Olson Regional Plan	. 55
	The Olson Regional Plan	
	Summary	
5.	DISTILLATE AND NATURAL GAS CONSUMPTION, PRICE AND	
	XPENDITURE TRENDS FOR HOUSEHOLDS	. 58
	Findings	. 58
	Recommendations	
	Discussion	. 59
	Tri-State Residential Consumption2001	. 60
	Summary	
6.	A REGIONAL ENERGY DATA DRIVEN APPROACH TO POLICYMAKING	
	Findings: An Energy Data Driven Approach to Policymaking	. 67
	Recommendations	
	Discussion: A Regional Energy Data-Driven Approach to Policymaking	. 68
6.	1 REGIONAL GAS & ELECTRICITY CONSUMPTION	
	Regional Commercial Energy Consumption: A Prototype	. 70
	Regional Government Energy Consumption: A Prototype	
	Energy Provider Sources of Data	
	Government Sources of Data	
	Regional Household Energy Consumption: A Prototype	. 76
	Natural Gas & Electricity/Consumption/Price by Jurisdiction	
6.	2 THE GASOLINE ESTIMATOR	
	3 A MWCOG ENERGY INTELLIGENCE SYSTEM	
	Context	
	Concept	
	Consequence	
	-	

Summary	90
7. ENERGY EFFICIENCY & CONSERVATION: BEST MANAGEMENT	
PRACTICES	91
Summary	
8. REGIONAL ENERGY POLICY FRAMEWORK GUIDES	105
1. New Energy Era Defined	106
2. Multi-Prong Approach to Energy Efficiency & Conservation	107
3. Major Energy Challenges	109
4. Proposed Regional Energy Goals and Objectives	112
5. MWCOG Policy Framework	114
6. Gasoline Policy Discussion Framework	115
7. Range of Possible Effects of Rising Gasoline Prices	116
8. Heating/Cooling Fuel Policy Discussion Framework	117
9. Energy Efficiency Information System	118
Summary	
9. SECTOR RESEARCH	
Residential Research Approach	127
Data Collection	128
Non-Government Sector Gas & Electric Service Suppliers	128
Residential-Specific Sector Information	129
Residential Energy "End-Use" Data Collection	130
MWCOG Government Sector Research	131
Summary	131
10. RECOMENDATIONS & INITIATIVES	132

APPENDICES

Appendix to Chapter 2	A- 1
Appendix to Chapter 6	A-10
Appendix to Chapter 7	A-54
Appendix to Chapter 9	A-59
Appendix to Chapter 10	A-66

EXECUTIVE SUMMARY: REDUCING ENERGY DEPENDENCE IN THE NEW ENERGY ERA

As the leadership of the Metropolitan Washington Council of Governments (MWCOG) plans for the Region's energy future in the "New Energy Era" which is defined by rising global demand, tight global energy supplies, and high global energy prices -- the proposed goals for the Region are as follows:

- To Reduce Energy Dependence for:
 - Sustained Economic Growth
 - Enhanced Energy Affordability
 - Increased Energy Security & Stability
 - Improved Environmental Quality

These regional goals can be met:

- By developing policies and adopting best practices that significantly increase the energy efficiency of:
 - > Vehicles
 - > Appliances
 - Buildings
- By diversifying the Region's energy sources to include an increased use of "green energy" and renewables; and
- By raising awareness of energy users so that they can make wise energy choices by creating a "culture of conservation".

While most of the recommendations in this Regional Plan focus on "demand" – Vehicles, Appliances, Buildings and Behavior, the Region can begin to influence "supply" by actively promoting the purchase of "green power" and the shift to alternative fuels where possible.

Recommendation 1.1	Develop a data and information collection and analysis system that will provide an understanding of the energy, economic, and social implications for the MWCOG Region.
Recommendation 1.2	Insure that existing polices related to the energy
	efficiency of vehicles, appliances, and buildings meet or exceed federal standards.
Recommendation 1.3	Coordinate state and local energy education programs to insure that a regional message is developed as well as the state and local messages.
Recommendation 1.4	Adopt a set of goals, objectives and best practices that will promote energy independence for the MWCOG Region.

1. Transition to a New Energy Era: Recommendations

2. Regional Energy Policy & Planning: Recommendations

Recommendation 2.1	Develop specific targets for the Region to reduce energy consumption and reduce energy dependence.
Recommendation 2.2	Review and update the "Metropolitan Washington Gas Supply Emergency Alert Plan" July 1985 (Review Completed January 1988) and the "Metropolitan Washington Power Emergency Alert Plan" July 1985 (Revised February 1988).
Recommendation 2.3	Review and update the "Washington Metropolitan Area Tri-State Energy Emergency Coordination Agreement" dated March 21, 1979.
Recommendation 2.4	Compile a list of performance contracts used by MWCOG jurisdictions and share best practices.
Recommendation 2.5	Compile a list of aggregation agreements used by MWCOG jurisdictions and other groups in the Region and share best practices.

Recommendation 2.6	Monitor the regulations of the Energy Policy Act of 2005
	to maximize the benefits of the Act to the Region.

3. Tri-State Energy Trends: Recommendations

Recommendation 3.1	Develop targets to reduce the rate of growth in the consumption of non-renewable energy, while continuing desired rates of economic growth as measured by rates of growth of population and employment.
Recommendation 3.2	Set a regional goal to increase the share of regional energy provided from alternative and renewable resources.
Recommendation 3.3	Monitor the regulations of the Energy Policy Act of 2005 to maximize the benefits of the Act for the Region.

4. Motor Fuel Trends: Recommendations

Recommendation 4.1	To reduce the growth in motor fuel consumed while simultaneously reviewing the economic and environmental impacts of:
	a. Higher gasoline prices.
	b. Increased education to remind drivers to approach the use of their vehicles more wisely.
	c. Continued promotion of the use of public transportation.
	d. Increased average miles per gallon of cars and trucks.
	e. A change in the way motor fuels are taxed.

5. Household Fuel Trends: Recommendations

Recommendation 5.1	Develop a data collection framework to provide current data on household energy consumption, expenditures and prices.
Recommendation 5.2	Increase promotion of options and incentives that residential consumers have in making housing and appliance energy choices.

Develop a monitoring system to assess the direct and
indirect effects of high energy prices for households.

6. Regional Energy Data Approach to Policymaking: Recommendations

Recommendation 6.1	Institute a process that will allow the Region to monitor its energy prices, consumption and expenditure data as a basis for regional energy planning to reduce energy dependency on non-renewable resources and strengthening the competitiveness of the regional economy.
Recommendation 6.2	Develop a region-wide monitoring system that addresses how the Region is adjusting to the new energy era. This monitoring system would:
	 a. Identify policy gaps that might exist and suggest policies that might need to be developed to adjust the transition process. b. Assess and guide the economic and social adjustment processes that households, businesses, and governments will have to make in this era of relatively expensive energy.
Recommendation 6.3	Create a working group among energy suppliers to develop at the regional level a system of reporting similar to the system used by the Energy Information Agency. Such a system would be region-specific and updated frequently.
Recommendation 6.4	Develop an executive level scorecard for MWCOG that keeps policymakers apprised at how the Region is managing in the new energy era.

7. Best Practices: Recommendations

Recommendation 7.1	Implement at the regional level best practices in energy	
	efficiency and conservation.	

Table ES-1Appliances: Best Management PracticesEnergy Efficient Appliances

Best Management Practices in Promoting Energy Efficient Appliances:

- 1. Set regional energy efficiency standards for appliances at or above federal standards
- 2. Advocate for increased appliance energy efficiency standards
- 3. Promote "Energy Star" appliances
- 4. Provide incentives to purchase energy efficient appliances

Table ES-2Vehicles: Best Management Practices

Energy Efficient Vehicles Best Management Practices

Best Management Practices in Promoting Energy Efficient Vehicles:

- 1. Advocate for increased automobile fuel efficiency standards
 - 2. Promote the purchase & use of energy efficient vehicles
 - 3. Promote government purchase of energy efficient vehicles
 - 4. Provide incentives to purchase energy efficient appliances

Table ES-3

Buildings: Best Management Practices

Non-Residential Sector: Building Best Management Practices

Best Management Practices in Promoting Energy Efficient Buildings:

- 1. Insure that building and conservations codes reflect the latest advancements in building energy efficiency
- 2. Promote & adopt LEED standards for renovation and new construction
- 3. Promote incentives for business and households to use the most energy efficient buildings and practices when renovating or building new

Table ES-4Energy Behavior: Best Management Practices

Best Management Practices in Promoting Wise Energy Choices:

- 1. Promote a "culture of conservation" through energy awareness programs and messages
- 2. Reassess energy taxes to insure they are promoting wise energy choice

Table ES-5Energy Sources: Best Management Practices

Best Management Practices in Promoting a Variety of Energy Sources:

- 1. Use fuel purchasing agreements to access "Green" energy
- 2. Adopt a "Solar Roof" goal for the Region
- 3. Promote the expansion of co-generation of energy

8. Summary/List of Frameworks: Recommendations

Develop at the jurisdictional level systems for collecting and reporting energy consumption, expenditure and
savings data.

For easy reference, section 8 of the report pulls together the various policy frameworks used throughout the report.

List of Frameworks

- 1. New Energy Era Defined
- 2. Multi-Prong Approach to Energy Efficiency & Conservation
- 3. Major Energy Challenges
- 4. Proposed Regional Energy Goals & Objectives
- 5. MWCOG Policy Framework
- 6. Gasoline Policy Discussion Framework
- 7. Range of Possible Effects of Rising Gasoline Prices
- 8. Heating/Cooling Fuel Policy Discussion Framework
- 9. Energy Information System Framework
- 10. Energy Transition Scorecard Outline Framework

1. TRANSITION TO A NEW ENERGY ERA

This section of the Regional Energy Plan provides the context on why as policymakers and consumers we need to intensify our focus on increasing energy efficiency and promoting energy conservation. Thus, with rising global demand, tight energy supplies, high energy prices, and the prospects of increasing costs to access traditional energy sources, policymakers should make energy efficiency and energy conservation a priority as we transition into a new energy era.

Findings & Recommendations

A New Energy Environment

1. The world has moved from an era of relatively adequate supply and low energy prices to an era of tight supplies and high energy prices.

A New Ener	gy Era Defined
Rising global demand	World demand for energy is growing at a rate of 2% per year.
Tight energy supplies	The large economies of the world are beginning to compete more openly to ensure energy is available to meet economic growth goals.
High energy prices	High and volatile energy prices are the result of the global demand-supply relationship, and high energy prices are necessary to expand energy supplies.
"Peak Oil Debate"	Worldwide discussion, debate and analysis is underway as to whether, the world will reach its highest capacity to produce oil starting 20 years from now. Evidence is being gathered to both prove and disprove whether the world is about to enter into a period of "peak oil". Regardless of how the debate is resolved, new sources of oil will require increasingly expensive investments and thus higher prices to sustain those

Table 1.1: A New Energy Era Defined

investments.

- 2. Today's energy consumptions levels and patterns were shaped in the previous era. It will take time to adjust those patterns because of the difficulty in shifting the demand for energy in the short run.
- 3. Given the low responsiveness of the demand for energy to increased prices, the effect of rising energy prices will show up first in non-direct energy consumption. For example, to get help from the market in reducing gasoline consumption could require a level of energy prices that may adversely affect the whole regional economy.
- 4. The natural slowness of the adjustment process creates many of the hardships associated with the transition to a new energy era. This adjustment process needs to be monitored and guided in order to mitigate its effect.

Recommendation: 1.1	Develop a data and information collection and analysis
	system that will provide an understanding of the energy
	economic and social implications for the MWCOG region.

Findings: Vehicles, Appliances, Buildings, and Behavior

5. Whether the major issue is one of price, demand, or supply, how the region manages its transition to the new energy era will require careful monitoring and creative policymaking. There will need to be a combination of the improvements in the efficiency of the vehicles we drive, the appliances we use, the buildings that we occupy (work, workshop, live, shop and relax and work out) along with improvements in our energy choices and behaviors.

A Multi-Prong Approach to Energy Efficiency & Conservation				
Areas		nportance in Energy Savings	Best Practices	
Fuel Efficiency Standards	petrole of the p	fuel comprises 61% of the um consumed in the District; 54% petroleum consumed in Maryland; % of the petroleum consumed in ia.	Fuel efficiency standards that meet or exceed the federal standards.	
Appliance Efficiency Standards	The tw warmin automo of the o of Mar the Tri	o biggest contributors to global ng are power plants and obiles. Electricity comprises 61% energy needs of the District; 11% yland, and 14% of Virginia. For -State Region, almost 26% of the 's energy comes from electricity.	Appliance Efficiency Standards that meet or exceed the federal standards.	
Building Efficiency	In the for:	 United States, buildings account 36% of total energy use; 65% of electricity consumption; 30% of greenhouse gas emissions; 30% of raw materials use; 30% of waste output; 12% of potable water consumption. <i>Yick, Robert, "A 'WHITE PAPER' Review Of</i> BUILDING", Supply House Times, Oct 2005. 	Promote the use of LEED building and other Green Building practices.	
Prices as a Conservation Incentive	Nationally, as the price of gasoline began to reach \$3.00 a gallon and in many cases rise beyond that, there began to be some softening in demand, which suggests that high energy prices will promote energy conservation.		Explore proposals & recommendations to use tax policy to maintain energy prices at levels that encourage a reduction in demand.	
Informed Energy Choices	Energy conservation leads to significant reductions in energy consumption.		Energy Education Programs that encourage consumers to make wise energy choices.	
Recommendation 1.2		Insure that existing polices related vehicles appliances and buildings restandards.	to the energy efficiency of	
Recommendation 1.3	Coordinate state and local energy education that a regional message is developed local messages to create a regional "control of the state of the st		ed in parallel with state and	

Table 1.2: A Multi-Prong Approach to Energy Efficiency & Conservation

Findings: Evolution of a MWCOG Policy Framework

- 6. The entire MWCOG region has a policy framework in place that focuses on affecting energy behavior and choices, consumption levels/efficiency, types of energy/distribution, energy assistance, and emergency planning.
- 7. A key challenge facing policymakers is the combined direct and indirect effects of rising energy prices and tight energy supplies. Six actions are suggested as a comprehensive approach; they are the following:
 - a. Sustaining economic development,
 - b. Promoting energy security,
 - c. Mitigating the effect of high energy prices on low and moderate income household,
 - d. Maintaining a high level of quality public services,
 - e. Continuing to promote improvements in air and water quality, and
 - f. Guiding decisions where housing and job are located to promote efficient and effective uses of energy.

Areas	Challenges
Economic	To keep dollars from flowing away from other regional
Development	consumption and services into energy and flowing out of
	the regional economy into the international economy
Energy Security	To reduce the effects of potential supply disruptions
Emergency	To enhance "homeland security"
Planning	
Economic	To assist low and moderate income households
Assistance	
Provision of	To maintain public service delivery while energy costs are
Public Services	rising and energy tax revenues may be falling
Environmental	To improve the environment
Quality	
Locational	To promote living and working locations and activity that
Decisions	are energy efficient; "Smart Growth"

Table 1.3: Areas & Challenges

8. With the transition to the new energy era, which has been defined by price inelastic energy consumption, relatively high energy prices and relatively tight energy supplies, policymakers are getting a crash course in market economics. The challenge is to shape responses in order to help transition towards a new energy era.

Regional Energy Goals and Objectives
Proposed Energy Goal

Reducing Energy Dependence for

- Sustained Economic Growth
- Enhanced Energy Affordability
- Increased Energy Security & Stability
- Improved Environmental Quality

Proposed Regional Energy Policy: Economic Objectives

- Insure adequate and reliable energy supply to support the region's economic growth and development
- Minimize outflow of dollars from region's economy
- Assist low and moderate income household to cope with the high cost of energy
- Maintain public service delivery in an era of rising energy prices
- Seek opportunities for aggregation of energy purchases
- Support policies that result in cost-effective energy efficiency standards

Illustrative Policies/Best Practices to Support Economic Objectives

- Develop Tax and other incentives
- Promote the adoption of appliance standards
- Update Building Energy Efficiency Standards
- Improve energy efficiency in Government Buildings
- Expand state and local funds for Low Income Home Energy Assistance
- Support Cost-Savings Through Aggregate Energy Purchases

Proposed Regional Energy Policy: Environmental Objectives

- Support implementation of energy technologies that are environmentally sound
- Promote development and implementation of renewable energy sources
- Promote development and implementation of alternatively, clean fueled vehicles
- Promote and implement energy conservation practices to reduce energy consumption and limit environmental impacts of energy production and use

Regional Energy Goals and Objectives
Proposed Energy Goal
CONTINUED

Illustrative Policies/Best Practices to Support Environmental Objectives

- Publicize tax & non-tax incentives for hybrid fuel vehicles and other alternative fuel vehicles
- Adopt at the regional level the state level mandates for the purchase of AFV's
- Expand the purchase of renewable (green) energy through aggregation agreements
- Expand regional wind energy purchase agreement
- Incorporate ENERGY STAR equipment into COG's cooperative purchasing program
- Encourage a regional agreement for LEED Standard for SIP credit

Proposed Regional Energy Policy: Security and Stability Objectives

- Protect critical and vital energy resources
- Reduce dependence on foreign sources of oil/petroleum products
- Reduce potential impacts of energy supply

Illustrative Policies/Best Practices to Support Energy Security Objectives

- Implement and regularly exercise and test regional emergency plans to mitigate the impacts of energy supply disruptions
- Promote redundancy and reliability improvements in the region's energy infrastructure
- Support diversification of regional energy portfolio
- Reduce potential impacts of energy supply disruptions
- Ensure the coordination among groups involved in energy emergency planning and preparedness

Recommendation: 1-4	Adopt a set of goals, objectives and best practices that
	will promote energy independence for the MWCOG
	region.

Transition to a New Energy Era: Discussion

The New Energy Era

As recent energy news highlights, the Washington DC Metropolitan Region, like all regions around the world has entered a new energy era – an era defined by high energy prices, rising global demand, and tight energy supplies. Whether the major issue is one of price, demand, or supply, how the region manages its transition, the new energy era will require a lot of monitoring and creative policymaking.

If the region is not able to achieve significant improvements in energy efficiency and reductions in energy consumption, increasing portions of the region's spending will go towards energy and increasing amounts of money will flow out of the region. Ultimately, this will reduce the region's ability to continue its rate of growth.

While energy consumption is a smaller component of economic activity than it was 25 years ago, for almost 25 years, improved energy efficiency and relatively low energy prices have structured locational decisions. Going forward policy making regarding energy for living, working and governing is as crucial as it was 25 years ago. Today's consumption levels and patterns were established based on local, spending and investment decisions for the past 25 years when energy supplies were adequate and the cost of energy was relatively inexpensive and energy efficiency was improving compared to today.

Yet, there are several things that will worry policymakers as the region moves into this new energy era – sustaining economic development, promoting energy security, mitigating the effect of high energy prices on low and moderate income households, maintaining a high level of quality public services, continuing to promote improvements in air and water quality, and guiding decisions where housing and jobs are located to promote efficient and effective uses of energy.

The basic policy framework focuses on the following (i) affecting energy behavior and choices, (ii) consumption levels and efficiency, (iii) types of energy and their distribution, (iv) energy assistance, and (v) emergency planning.

Currently jurisdictions have laws, programs, and regulations that affect all these areas. And, the effects of these polices are evident in the energy efficiency and data. *However, these gains were achieved in an era of relatively low and stable prices with relatively adequate supplies. These areas need to be viewed collectively to determine their adequacy in the new energy age.*

The Challenge: Transitioning to a New Energy Era

Currently, there is no sound methodologically in place to collect regional data on energy price, consumption, and expenditures for the Metropolitan Washington Council of Government's region. As a result, policymakers cannot assess the regional economic and social impacts of changes in energy prices, consumption, and expenditures for planning purposes.

Similar to other regions throughout the country, as MWCOG moves from an era of regulated and relatively inexpensive energy to an era in which energy is deregulated and relatively expensive, planners and policymakers are forced to grapple with the effects of these changes on the budgets of households, businesses and governments, and hence on regional economic activity.

For example, with increases in the prices of gasoline, we see households, businesses, and governments trying to adjust. Since there is a high price inelasticity of demand for gasoline, rapid price increases have not led to major reductions in miles driven. That suggests that non-gasoline consumption will go down. However, if we were to see significant reductions in gasoline consumption, then that will have an effect on the amount of tax revenue collected. This in turn, suggests that local governments could be faced with rising energy prices and declining revenues. Likewise, overall economic activity could be adversely affected.

The ability to assess and guide the economic and social adjustment processes that households, businesses, and governments must make in this era of relatively expensive energy, particularly in the area of transportation, will be a major challenge facing planners and policymakers.

The Nominal versus Real Price Conundrum

Current news articles highlight that, adjusted for inflation; today's price per gallon of gas (and energy prices in general) is still below the peak in 1981. This fact, while true, obscures the challenge of rising total expenditures on gasoline and the difficulty of people, governments, and businesses towards shifting to alternative-fueled forms of transportation.

- 1. For example, if the total miles driven are up and average miles per gallon are the same or higher, then total expenditures are up because people are driving more. Anecdotal reports suggest what really seems to motivate motorists is the cost of filling up a tank. Additionally, the cost of a fill up provides for an easier handle to register the effect of price increases. It is one thing to talk about \$3.00 a gallon; and another to talk about \$45.00 to fill up the gas tank. People have a real sense of what \$45.00 will purchase compared to \$3.00.
- 2. Also, having already made locational and consumption decisions, these decisions are hard for end users to reverse.

It is the natural slowness of the adjustment process that will create many of the hardships associated with this transition to a new energy era.

Direct Energy Consumption the Last Thing to Fall

Ironically, in the case of gasoline consumption, the last place we might see the effect of rising fuel prices will be in the reduction of miles driven, meaning that the effects of increases in the price of gasoline will appear elsewhere in the economy first.

Understanding how non-gasoline discretionary spending changes will be important for planners and policymakers.

Price Inelasticity: The High Costs of Adjustment

Until recently, one conclusion drawn from the data relating to the increase in gasoline price is that rising gasoline prices while, widely discussed, do not affect gasoline consumption. Therefore, the "market" and the "economy" appear to be managing price volatility well. And if the experience from other countries, like England, is indicative, gasoline prices may rise even higher before folks start to look seriously for alternatives.

In addition to behavior constraints, for individuals gasoline comprises only a small percentage of the total cost of operating a vehicle. For an example, a 100% increase in gasoline and motor oil prices may lead to just a 25% increase in the Total Cost of Operation (TCO). The question becomes what would someone have to spend in the form of new vehicle purchases to reduce his or her operating costs by 25%. Although the capital costs increase and the operating costs decrease it still may not be enough to offset the expenses of a new vehicle.

With the demand for gasoline being so price inelastic, it is going to take extremely high prices or something other than increased prices to change gasoline consumption patterns. If prices get to the point where they begin to reduce driving, then the whole regional economy will have some big challenges, with driving being among the least of its problems.

To get help from the market in reducing gasoline consumption will require a level of energy prices that may adversely affect the entire regional economy.

Energy and the Environment

One beneficial effect of the new energy area is the impact it could have on the environment. If increased prices leads to major reductions in energy consumed (for gasoline in particular), the impact will be an improvement in environmental quality since the generation of energy and gasoline-consumed are major contributors to the region's poor (albeit improving) air quality.

Regional Economic Competitiveness Effects

As a country, a region, and individuals, we seem to be stuck in a pattern of energy consumption that leaves us unnecessarily exposed to energy market and political forces. According to the "globalization" thesis "while the U.S. became focused on terrorism, the whole nature of globalization changed for both the terrorists and those fighting terrorism. And, the real threat to the Untied States is economic globalization, not terrorism. The way the United States, as a country, responds to globalization can both weaken the country's competitive advantage and feed the forces of terrorism". According to the "globalization thesis" the challenge is to increase energy and economic independence in an increasingly inter-related world.

Although the prices of energy in general and gasoline in particular have risen, the demand for energy has not fallen proportionally. Thus, the effect is the region currently is exporting more and more dollars from its economy. So, even if the regional economy seems to handle the price increases now, there may be some point at which a combination of a reduction in the consumption of substitute goods and the exporting of dollars begin to affect the rate of economic growth.

Ultimately, to enhance regional economic competitiveness will require continued increases in energy efficiency and overall reductions in energy consumption.

Rising Energy Prices & Supply

According to economic theory, rising energy prices will lead to an increase in the supply of energy. While rising prices may increase supply, such supply will require continued high prices to make the additional production profitable.

The real adjustment issue might not be a price adjustment, but an adjustment issue that relates to a "disruption" of supply.

"Peak Oil Debate"

There is an international debate regarding the rate at which the world's economies will run out of oil. One aspect of this debate is called the "Peak Oil Debate". According to one side of that debate, at some point the world will move beyond the halfway point using its oil reserves and production will have peak and then decline rapidly.

According to the U.S. Department of Energy,

"Peak Oil is the simplest label for the problem of energy resource depletion, or more specifically, the peak in global oil production. Oil is a finite, non-renewable resource, one that has powered phenomenal economic and population growth over the last century and a half. The rate of oil 'production,' meaning extraction and refining (currently about 84 million barrels/day), has grown in most years over the last century, but once we go through the halfway point of all reserves, production becomes ever more likely to decline, hence 'peak'. Peak Oil means not 'running out of oil', but 'running out of cheap oil'. For societies leveraged on ever increasing amounts of cheap oil, the consequences may be dire. Without significant successful cultural reform, economic and social decline seems inevitable". <u>http://www.energybulletin.net/primer.php</u> (last visited March 28, 2006)

To emphasize the point that DOE makes -- Peak Oil means not 'running out of oil', but 'running out of cheap oil'. Although, technology advances will allow for additional sources of oil to be found, most likely the cost of finding and extracting the oil will intensify, resulting in higher energy prices needed to improve innovation and exploration.

Summary

The DC Metropolitan Region faces potentially adverse effects of worldwide changes in energy prices, demand, and supply which may negatively influence the regional economy as a whole. These effects will put strains on government, business and household budgets, forcing decision makers to choose how to increase energy efficiency, improve energy conservation, and manage rising energy prices. To the extent that positive, proactive actions can be taken, the regional economy will be in an improved position to reduce the outflow of energy dollars from the regional economy, improve air quality, and to manage the transition to the new energy era.

2. ENERGY POLICY AND PLANNING IN THE REGION 1979-2005: FINDINGS, RECOMMENDATIONS & DISCUSSIONS

This section of the Regional Energy Plan outlines the energy policy, planning, and program framework that have evolved at the state level including the MWCOG level. As the information below illustrates, a policy framework exists at the federal, state, and jurisdictional levels. The challenge will be to become even more aggressive in shaping future efforts to improve energy efficiency and conservation.

Findings: Tri-State--Energy Policies & Plans

1. The basic MWCOG policy framework focuses on affecting energy behavior and choices, consumption levels and efficiency, types of energy and their distribution, energy assistance, and emergency planning.

Area	Policy Actions
Behavior	Guiding energy consumption choices
Consumption Levels	Reducing demand
Consumption Efficiency	Improving efficiency
Source Variety	Promoting a variety of sources and of distribution networks
Assistance	Mitigating the effect of high prices on low and moderate income households
Contingency Planning	Managing crises

 Table 2.1: Area & Policy Actions

Compiled By: Jerome S. Paige & Associates

- 2. Currently, the Region already has policies in each of these areas (Federal, State and Jurisdictional levels). Although, these policies and programs have to be compiled by each jurisdiction and an assessment must be made to determine how the policies contribute to reaching the regional goal.
- 3. Past and existing energy policies and practices have made the Region increasingly energy efficient, but efforts need to be increased and coordinated through an overall policy framework that recognizes a multi-pronged approach.
- 4. These gains were achieved in an era of relatively adequate supplies accompanied by low and stable prices. These areas need to be viewed collectively to determine their adequacy in the new energy age.

- 5. Municipal aggregation programs are increasing throughout the Region; consistent with the recommendations of a 1997 report, these agreements have lead to an increase in renewable energy used throughout the Region.
- 6. The number of performance contracting programs continues to expand, which are in line with the recommendations of a 1997 report and these agreements are leading to increased energy savings in the Region.
- 7. While there are a number of efforts at the state and regional levels, the MWCOG Region does not have an explicit, aggressive energy efficiency goal to focus such efforts.

Recommendation: 2.1	Develop specific targets for the Region to reduce energy consumption and energy dependence.
Recommendation: 2.2	Review and update the "Metropolitan Washington Gas Supply Emergency Alert Plan" July 1985 (Review Completed January 1988) and the "Metropolitan Washington Power Emergency Alert Plan" July 1985 (Revised February 1988)
Recommendation: 2.3	Review and update the "Washington Metropolitan Area Tri-State Energy Emergency Coordination Agreement" dated March 21, 1979.
Recommendation: 2.5	Compile a list of aggregation agreements used by MWCOG jurisdictions and other groups in the Region and share best practices.

Findings: Federal Energy Policy Act 2005

The Energy Policy Act of 2005 provides tax credits to expand the supply of alternative and renewable resources.

Recommendation: 2.6	Monitor the regulations of the Energy Policy Act of 2005 to
	maximize the benefits of the Act to the Region.

Energy Policy and Planning In The Region 1979-2005: Discussion

The purpose of this section is to provide an overview of the energy policies and plans pursued by the Metropolitan Washington Council of Governments, the District of Columbia, Maryland, Virginia and selected local jurisdictions. As our overview suggests, the MWCOG area has the elements of a regional energy plan in place. However, as we will note, these policy and planning efforts could be enhanced by adopting a framework for regional energy data collection. Additionally, setting regional targets for the reduction in energy consumption may provide an entrée for greater energy sources.

MWCOG: Policies & Plans 1979-2004

Based on discussions with the staff of the Metropolitan Washington Council of Governments (MWCOG), several documents provided background for the current regional energy plan. Those documents included the following:

Table 2-2: Major Energy Related Policy & Planning Documents

TABLE 2-2 Major Energy Related Policy & Planning Documents Metropolitan Washington Council of Governments 1979-2004		
1979	"Washington Metropolitan Area Tri-State Energy Emergency Coordination Agreement" March 21, 1979	
1979	"Metropolitan Washington, Energy Conservation and Management Plan", Approve May 16, 1979	
1981	"Emergency Energy Conservation Act", Final Report, November 1981	
1982	 "Energy Consumption in Metropolitan Washington 1980; Findings Report" (August 1982), Metropolitan Washington Council of Governments. (REC 1980) 	
1988	"Metropolitan Washington Gas Supply Emergency Alert Plan" July 1985 (Review Completed January 1988)	
1988	"Metropolitan Washington Power Emergency Alert Plan" July 1985 (Revised February 1988)	
1997	"Strategic Energy Assessment; Metropolitan Council of Governments", R.W. Beck (October 1997) (RSEA 1997)	
2004	"Regional Air Quality Plan", Metropolitan Washington Air Quality Plan,	

Compiled By: Jerome S. Paige & Associates

Washington Metropolitan Area Tri-State Energy Emergency Coordination Agreement March 21, 1979

A major goal of Washington Metropolitan Area Tri-State Energy Emergency Coordination Agreement is to achieve consistency throughout the Metropolitan Washington Area in energy conservation and resource management measures. The District of Columbia, Maryland, and Virginia entered into an energy emergency coordination agreement for several reasons:

- 1. Because shortages of energy supplies reaching the Washington metropolitan area require interstate coordination of conservation and contingency planning, the Agreement recognizes the Washington, D.C. Standard Metropolitan Statistical Area as a unified energy consuming and economic unit.
- 2. Because the local governments participating in the Metropolitan Washington Council of Governments (MWCOG) are coordinating their policies and programs in cooperation with the states and the District of Columbia, the Agreement ensures that compatible energy conservation emergency plans are formulated within the interstate metropolitan area; and
- 3. Because of the importance of consulting with local governments prior to actions being taken is recognized by all parties, and in order to achieve consistency of actions among the parties, the Agreement calls for the sharing of information among the affected jurisdictions and the dissemination of information to the public.

Energy Conservation and Management Plan, 1979

This plan was prepared by the local jurisdictions. It was designed to

- 1. Conserve energy resources commensurate with shortfalls reasonably anticipated under current and expected international petroleum developments, and to
- 2. Provide necessary levels of transportation services and related community assistance so that disruptions to lifestyles and the Region's economy will be minimized.

The Thirteen elements of the plan included:

Expanded Ridesharing

- 1. Expand formal ridesharing programs
- 2. Establish ridesharing "staging areas" and additional fringe parking areas
- 3. Promote combined home-based auto trips for non-work travel

Transit Related Activities

- 4. Provide for increased mass transit use by initiating Sunday Metrorail operation, building a fleet of reserve Metrobuses and preparing a bus deployment program
- 5. Increase supply and use of commuter rail and private bus service
- 6. Give preference to car/van pools at fringe parking lots

Work Related Activities

- 7. Encourage compliance with building temperature adjustment programs of federal and state governments
- 8. Expand use of staggered flex-time working hours where appropriate
- 9. Invoke commercial parking rates for government and private sector employees
- 10. Improve public sector energy efficiency through control over building and vehicle fleet operations

Community Assistance and Information Activities

- 11. Establish citizen information capability with respect to hours of service station operation
- 12. Promote consistent area-wide approach to motor fuel sales restrictions programs
- 13. Utilize state fuel "set-aside" programs to maintain essential governmental, transportation and community assistance services.

Regional Energy Consumption - 1980

The 1980 report provided estimates of energy consumption in several sectors:

- 1. Residential
- 2. Transportation
- 3. State and Local Government
- 4. Hospitals
- 5. Commercial/Industrial/Federal Sector
- 6. Steam and Electric Utilities.

This report contained seven key findings that related to:

- 1. Total energy consumption
- 2. The total, per household and per person, costs of energy
- 3. The value of lost purchasing power to Region due to energy purchases
- 4. The ranking of the primary fuels
- 5. The principal end use of energy
- 6. The comparison of the Washington Region's per household and per capita consumption to New York City and to the United States
- 7. The relative dependency of the Region on various types of fuel

The eight regions that were part of the 1980 study were the following:

- 1. District of Columbia
- 2. Montgomery County
- 3. Prince George's County
- 4. Arlington
- 5. Alexandria
- 6. Fairfax County
- 7. Loudoun County
- 8. Prince William.

Although, there were more than eight jurisdictions in MWCOG in 1980, this is not reflected by the 1980 report due to the methodology for reporting the data. For example, the Cities of Gaithersburg, Rockville, and Takoma Park are all accounted for in the Montgomery County total. In all, there were 16 jurisdictions in 1980. Currently, the MWCOG region includes 19 jurisdictions. Over the 26-year period since 1980, there has been significant growth in population, households, employment, geography and economic activity which further justifies a review in the energy policy, planning, and programs slated for MWCOG.

After the current consultants reviewed the methodology in the 1980 report and discussed it with analysts at the Energy Information Agency (EIA), it was determined that the methodology could not be replicated. The 1980 report can be credited with beginning a needed discussion of methodology that is now continued in this report. While the 1980 report was useful at the time, we explored an alternative methodology that will be discussed in another section of this report.

Emergency Energy Conservation Act, November 1981

The final report for this project provided recommendations to the Chief Executives of the District, Maryland, and Virginia to assist in coping with a motor fuel shortfall of 20 percent for six months in the Washington Area. These include:

- 1. Minimum Purchase & Odd-Even Gasoline Purchase Plan
- 2. Priority Gasoline Assistance for Vanpools
- 3. Flag System
- 4. Gasoline Assurance for Public Use Vehicles
- 5. Public Education Program, inclusive of:
 - a. Staggered Retail Service Station Operating Hours
 - b. Travel Advisory Services
 - c. Trip Consolidation
 - d. Telephone Hotlines
 - e. Encouragement of Alternatives to Travel
 - f. Voluntary Emergency Building Temperature Restrictions

- 6. Work Schedule Alteration
- 7. Mandatory Employer Ridesharing
- 8. Expansion of Computerized Ridesharing Programs
- 9. Utilization of Reserve Bus Fleet
- 10. Facilitate Bicycle Use
- 11. Reduced Public Vehicle Use
- 12. Enforce/Reduce Speed Limits
- 13. Compressed Work Week
- 14. Automobile Rapid Transit/Organize Vanpools from Staging Areas
- 15. Eliminate Barriers to Improved Transit Service. Source: Beck, "Emergency Energy Conversation Act, November 1981

Regional Strategic Energy Assessment - 1997

In 1997, MWCOG commissioned a study looking at the strategic options for the Region pre-regulation and post-deregulation. The report focused primarily on electricity options and also contained an appendix that illustrated similarities for natural gas.

The report "Strategic Energy Assessment; Metropolitan Council of Governments" (October 1997) (RSEA 1997) defined opportunities for reducing energy costs needed to identify next steps and develop a strategy designed to position MWCOG for deregulation of the electric utility industry. The report presented the findings under two broad headings:

1. Pre-Deregulation Review and Analysis

This report reviewed advantages and disadvantages, including risks associated with these options:

- 1. Self-generation
- 2. Merchant plant development
- 3. Creation of municipal utility to serve the entire jurisdictional area of some or all of MWCOG Members
 - a. Creation of a limited municipal utility ("mini-muni") to serve
 - i. Members' facility loads only
 - ii. Certain concentrated loads only
- 4. Streetlight ownership only (Note: it is not necessary to own a municipal utility in order to own streetlights)
- 5. Direct access options
- 6. Negotiation or partnership with current providers.

2. Post-Deregulation Review and Analysis

- a. For MWCOG Members' municipal electric loads only
- b. For selected strategic loads of MWCOG members
- c. With MWCOG or its members bidding out load aggregation services;

- d. With MWCOG and/or its members participating in a regional utility authority
- e. With MWCOG and PJM Interconnection (www.pjm.com/indes.jsp)
- f. With MWCOG and area Public Service Commissions or other regulatory bodies.

This report resulted in two major results; (i) the expansion in the number of performance contracting and (ii) municipal aggregation programs for the Region.

Energy performance contracting became the focus of the implementation of the Beck study recommendations. At that time, the project manager -- after consultation with a Chevron-Texaco consultant -- thought that aggregation would be too difficult to implement. So the consultant offered energy performance contracting instead. However, as reviewed above, individual jurisdictions did pursue municipal aggregation programs.

Performance Contracting

The MWCOG Energy Service Performance Contracting Program began in 2000. The program provides participating governments and organizations the opportunity to use a self-funding method of upgrading equipment and facilities that requires no initial capital outlay. The customer is guaranteed that the cost of energy efficient improvements will be paid from energy savings achieved. To date, ten partnerships have been explored, with five projects having been carried out. We believe that there is enormous potential for local governments to take much greater advantage of this program. For example, the District of Columbia's initial participation involved several projects. One project involves a detailed building audit of the facilities at 441 Fourth Street N.W. (One Judiciary Square), and then the design of a cost-effective energy conservation program using MWCOG's energy performance contract approach. The potential reduction in energy and operating expense could range from 15 to 30 percent of the existing utility bill.

Greening Initiatives

Over the years, MWCOG has endorsed and/or been involved in several other greening initiatives. Some are specific to energy savings while others are broader and more environmental focused. Below are selected initiatives:

- *Green Lights:* In 1993, the MWCOG Board passed a resolution joining the EPA Green Lights Program. At the time, the US EPA Green Lights Program was a voluntary program that encouraged the widespread use; of energy-efficient lighting. Green Lights participants realized an average return of 25 percent, with average savings in lighting electricity bills of 50 percent or more.
- *Energy Star:* In 2004, the MWCOG Board passed a resolution joining the Energy Star Program sponsored by DOE and EPA. Like Green Lights, Energy Star is a voluntary program jointly managed by the US Energy and Environmental

Protection Agency designed to help businesses, government agencies, and individuals protect the environment through superior energy efficiency.

- *Green Building:* The rapidly evolving "Green Building" approach to design and construction has provided real examples of how to implement positive environmental change.
- *Regional Agriculture and its Connection to Green Infrastructure:* Agricultural land is an integral part of green infrastructure. Farmland encompasses wetlands, meadows, pastureland, woodland and other wildlife habitat that supports native species, provides ecosystem services such as water filtration and carbon sequestration, and adds to human enjoyment of the countryside. Given that population growth projections will add an additional 2 million residents to the Region in the next 25 years, the challenge to local, state and regional planning agencies will be to help agriculture and other "green and open space" lands compete for their place in the changing landscape.

This initiative seeks to provide information on the current and historical state of agriculture in the Washington Metropolitan Area, and to create a regional agriculture network to link farmers, consumers and policymakers. The basic information available includes gross statistics on agriculture, information about actions that can be taken to support local agriculture and database listings of local farmer's markets, pick-your-own farms and vineyards.

Homeland Security

The Post 9/11 focus on homeland security has highlighted the importance of the continuation of energy supply in the time of emergencies as well as protecting energy generation and distribution facilities. Prior to the creation of federal and local homeland security agencies, Energy Policy Advisory Committee (EPAC) promoted the need for state and regional energy plans, updating contingency and emergency planning, energy representation in jurisdictional emergency centers, inclusion of energy in the Federal Emergency Plan as a separate Emergency Support Function, the protection of critical assets and the inclusion of energy in the regional planning exercises.

State & Local Jurisdictions: Polices and Plans

According to information provided by staff, MWCOG has not completed a comprehensive energy consumption and expenditure assessment since 1982 and that report was based on 1980 data. For the past 26 years, MWCOG has not assessed the economic and/or social effects of energy prices, consumption and expenditures in the Region.

However, during the last two decades, state, county and city governments have put ongoing energy policies and programs in place. Looking back over the array of polices, programs, and recommendations, many are being practiced in one form or another.

TABLE 2.3: Table 2-3 Energy Policy & Planning Virginia, District of Columbia, Maryland

TABLE 2-3		
Energy Policy & Planning		
Virginia, District of Columbia, Maryland		
2001	"The Virginia Energy Plan" December 2001	
	Source: http://www.mme.state.va.us/de/chap2b.html	
2002	"Comprehensive Energy Plan 2003-2007", DC Energy Office, DC	
	Government, 2002. (CEP III)	
	Source: <u>http://www.dcenergy.org/</u>	
2003-2004	"2003 Annual Report", "2004 Annual Report, and "Energy	
	Solutions for Local Governments" Maryland Energy Administration.	
	Source: <u>http://www.energy.state.md.us/</u>	

The EERE State Activities and Partnerships web site links to the Department of Energy's Office as it relates to Energy Efficiency and Renewable Energy (EERE) partnerships with and projects in the states. <u>http://www.eere.energy.gov/states/</u>

The Database of State Incentives for Renewable Energy (DSIRE) is a comprehensive source of information on state, local, utility, and selected federal incentives that promote renewable energy. <u>http://www.dsireusa.org/</u>

A combination of the websites from the states, the EERE State Activities & Partnerships web site, and the Database of State Incentives for Renewable Energy provide an array of energy efficiency plans, policies, and projects.

The Virginia Energy Plan

This plan is comprised of goals, objectives and strategies.

Table 2.4: Virginia Goals 1 & 2

Goal 1: Operate Virginia State Government as a Model of Energy Efficiency		
Objective 1.1.0 Objective 1.2.0	To reduce energy costs and consumption in state-owned facilities To implement programs and procedures that ensure the efficient use of	
00jeeuve 1.2.0	energy in state government operations	
Objective 1.3.0	To increase energy efficiency and diversity in state government transportation	
Goal 2: Ensure Sustain	able Use of Energy in Virginia	
Objective 2.1.0	To encourage economic development by advance energy technologies and use of Virginia's indigenous energy resources	
Objective 2.2.0	To implement energy efficiency projects that enhance environment and economic development	
Objective 2.3.0	To increase energy efficiency and diversity of transportation in Virginia	
Objective 2.5.0	To provide energy education and outreach to Virginians to increase their ability to make informed energy choices	

The Virginia Department of Mines, Energy and Minerals provide a guide to energy programs in the State. The web address is <u>http://www.mme.state.va.us/De/default.htm</u>. See APPEN_2.A for a list of the energy programs for Virginia.

The U.S Department of Energy provides a guide to state energy programs. See <u>http://www.eere.energy.gov/states/</u>. See APPEN_2.B for a list of the energy programs for Virginia.

District of Columbia Comprehensive Energy III (CEP III)

While MWCOG has not completed a profile of energy consumption since 1980, the District of Columbia released its comprehensive energy plan in 2002. Looking back over a 26-year period, the District's Comprehensive Energy Plan, 2002-2007 (CEP III) reported:

Economic indicators point toward significant achievement in maintaining energy efficiency in the District:

- DC produced more goods and services with decreasing energy
- DC employed more workers with declining per-employee energy cost
- DC's overall energy expenditures remained relatively flat for the last ten years
- DC's total energy expenditures increased less than the rate of inflation

DC tended to follow or do better than national trends. If the Region's energy experience has been similar to DC, we would expect to find a Region that is increasingly energy efficient.

While the CEP III outlined very positive energy trends, it also highlighted significant challenges to sustaining those trends. Regionally those challenges include the role of energy consumption and expenditures and the competitive advantage of the Region. Since globally the economic competitive race is being run within regions, the degree of energy dependency/independency of the MWCOG Region, the energy security of the Region, and the effects of energy on budgets – household, government, and businesses may be strained and the trends could become less favorable over time.

District of Columbia Energy Office (DCEO)

The government of the District of Columbia has an initiative to Green the Government.

Conservation

The DCEO assists District residents in the form of conservation and weatherization programs, based on a survey that will determine if a structure qualifies. These programs include:

- Residential Conservation Assistance Programs
- Weatherization Assistance Program (WAP)
- Weatherization Plus and Low-Income Appliance
- Weatherization Rehab
- Alternative Fuels Transportation
- Home Energy Rating Program
- Energy Loan Promotion Program
- Institutional Energy Efficiency Grants
- Small Business Energy Efficiency Programs
- State Heating and Oil Propane Program
- Building Code

Education

The DCEO is devoted to educating the public about energy issues including conservation and efficiency, as well as instructing students on energy issues within the schools.

- State Energy Program
- Energy Hotline
- Energy Patrol
- Energy Conservation Workshops
- Teacher Training Programs
- Energy Curriculum
- Energy Efficiency Evaluation Program
- Interactive Website Program

Regulatory/ Legislation

The DCEO is very active in legislation dealing with energy issues.

- DC Municipal Aggregation Program (MAP)
- Rate Case Intervention
- Utility Rate Restructuring
- Administration of the Reliable Energy Trust Fund
- Administration of the Gas Trust Fund
- Gas Station Advisory Board
- Residential Energy Assistance Challenge (REACH)

Energy Assistance Programs

The DCEO is also active in assisting residents with their energy and utility bills.

• Low Income Home Energy Assistance Program (LIHEAP), LIHEAP Expansion

• Utility Discount Programs, Residential Assistance Discount (RAD) Expansions, RAD Arrearages

- Residential Essential Service
- Economy II
- Economy II Re-Certification
- DC Water and Sewer Authority (WASA)

Sustainable Solutions

The DCEO is a proponent of more environmentally friendly energy uses and is a forerunner in exploring and implementing environmentally sound energy uses and standards.

- Greening the Government Steering Committee
- Energy Star Products Purchasing Program
- Energy Star Appliance Rebate Program
- Green DC Week

- Renewable Portfolio Standard
- Renewable Energy Demonstration Project
- Removal of Green House Gas Initiative
- Green Faith Non-Profit Initiative

Planning and Evaluation

• Emergency Response Planning (ESF12)

The DC Energy Department http://www.dcenergy.org/ provides programs to promote energy efficiency in the District of Columbia. See APPEN_2.C for a list of energy programs for the District of Columbia.

The U.S Department of Energy provides a guide to state energy programs. See http://www.eere.energy.gov/states/ which provides a list of the energy programs for the District of Columbia. See APPEN_2.D for the District of Columbia Incentives for Renewable Energy.

State of Maryland: Annual Reports & Guides

The Maryland Energy Administration (MEA) promotes and manages energy savings initiatives for State operations and MEA participates with statewide efforts to promote energy efficiency in local governments, private business, and residences. MEA operates six program areas – residential, commercial, state/local government, industrial, transportation and renewable energy.

The Maryland Energy Administration published a brochure, "Energy Solutions for Local Governments" that covers:

- 1. Community Energy Loan Program (CELP)
- 2. Solar Energy
- 3. Wind Energy
- 4. Local Renewable Energy Project Technical Support
- 5. Rebuild America/Energy Smart Schools
- 6. Energy Performance Contracting
- 7. Green Building Program
- 8. Alternative Fuel Vehicles.

The Maryland Energy Administration <u>http://www.energy.state.md.us/</u> provides programs to promote energy efficiency in Maryland. The US Department of Energy provides a guide to state energy programs.

See <u>http://www.eere.energy.gov/states/</u>. See APPEN_2.E for a list of the energy programs for Maryland.

The Tri-State Area

The Database of State Incentives for Renewable Energy (DSIRE), <u>http://www.dsireusa.org/</u>, links to programs related to green power, solar, and wind in the District of Columbia, Maryland and Virginia.

In addition to the state efforts, several of the MWCOG jurisdictions have energy policies and programs. For example, Montgomery County operates its energy programs through the Department of Environmental Protection (http://www.montgomerycountymd.gov/deptmpl.asp?url=/Content/dep/index.asp)

Chapter 18A of the County Code addresses Energy Policy, and requires that the County Executive report to the County Council each year about the continuing appropriateness of the Energy Policy adopted in 1995. The code also calls for the development of an annual energy work program, and the establishment of long-range goals to accomplish policy objectives.

The table in APPEN_2.F references a source for the U.S. Department of the Energy's Efficiency and Renewable Energy Programs and Activities by state.

Summary

This section outlined the energy policy, planning and program framework that has evolved at both the state and MWCOG level. As the information illustrates there are plans, policies, and programs in place to increase energy efficiency, promote energy conservation, and improve air quality. As the MWCOG region moves into this new energy era, policymakers will need to become even more aggressive in their approach if the effects of rising and volatile energy prices on public, business, and household budgets are to be mitigated.

3. TRI-STATE ENERGY TRENDS, 1997-2001

This section of the Regional Energy Plan, suggests that the Tri-State Area – the District of Columbia, Maryland and Virginia -- has been become more energy efficient. Over time, the Tri-State Area has been able to enjoy rates of economic growth while using less and less energy. While the economy seems to be able to absorb increases in energy expenditures, the MWCOG Region needs a system to monitor the ways in which increasing energy expenditures may adversely affect the economy. The Tri-State Area uses very few "green" or non-renewable energy sources. While the Tri-State data suggests some broad areas on which to focus, the region could benefit from MWCOG-specific energy data.

Findings: Tri-State--Energy Trends

- 1. The U.S. Energy Information Agency provides one of the major sources of data on energy prices, consumption and expenditures. EIA provides that data at the federal and the state level, with the District of Columbia as a state for the purposes of data collection, reporting and analysis. However, no sound methodology exists for reporting data at the sub-state level.
- 2. State trends can be compared, but sub-state (e.g. the Metropolitan Council of Government's region) cannot be analyzed using the EIA data.
- 3. Over the period 1997 to 2001, for the District, Maryland and Virginia, economic activity, as measured by the growth in the gross state product (a U.S. Department of Commerce measure of the amount of goods and services produced in a state), grew at faster rates than the growth in energy consumption.
- 4. With economic activity increasing at a faster rate than energy consumption, the Tri-State Area's energy efficiency is improving. It is taking less and less energy to produce one dollar's worth of economic activity. This in an outcome measure that indicates the combined effects of energy decision, policies, and regulations are working for the Tri-State Area.
- 5. Top fuels: The District of Columbia derives 61 percent of its energy from electricity; Maryland gets 40 percent of its energy from petroleum; and Virginia's top fuel is petroleum also (39 percent).
- 6. In 2001, the year of the most recent data, the use of renewable and alternative energy sources were reported at below one percent.

7. Due primarily to their geography and economies, Maryland and Virginia are more dependent on petroleum than the District. About 40 percent of Maryland's energy and 39 percent of Virginia's energy comes from petroleum. And just over 50 percent of the petroleum is used for gasoline. In contrast, the District derives 12 percent of its energy from petroleum and 61 percent of that is comprised of motor gasoline.

Recommendations

Recommendation: 3.1	Develop a target to reduce the rate of growth in non-renewable energy use while continuing the same rates of economic growth as measured growth in population and employment.
Recommendation: 3.2	Set a regional goal to increase the share of regional energy that is provided from alternative and renewable resources.

Tri-State Energy Trends: Discussion

Tri-State Energy Consumption, Expenditures, Prices & Economic Activity

The Energy Information Agency data is not reported at the sub-state level and no current methodology exists to extract sub-state data. Nonetheless, the data provided suggest several useful trends for the Tri-State Area of the District of Columbia, Maryland, and Virginia.

As Table 3-1 illustrates, the Tri-State Area has been able to sustain rates of economic growth that are significantly higher than the rate of growth of energy expenditures. The period 1997-2001 is used for allow for the compatibility of data.

TABLE 3-1								
Tri-State Gross	Tri-State Gross State Product, Energy Consumption, Energy Prices, and CPI-U							
		(Inflation)						
0	Gross State Produc	ct	Energy Prices	CPI-U				
Tota	l Energy Consum	ption		(Inflation)				
	Average Annual Percent Change							
		1997-2001						
District of								
Columbia	6.67%	1.59%	3.88%	2.07%				
State of Maryland 4.97% 0.65% 6.25% 2.07								
State of Virginia	7.26%	0.87%	3.38%	2.07%				

Table 3.1: Tri-State Gross State Product, Energy Consumption, Energy Prices, and CPI-U (Inflation)

Source: Energy Information Agency

Table 3-2 provides a year-by-year change in the Gross State Product (GSP) for each of the states and a combined total for all the states. As the data illustrates, the GSP for the Tri-State Area has been growing at a healthy rate, above 6 percent per year.

TABLE 3-2 Tri-State Trends Gross State Product Million \$ 1997-2001								
1997 1998 1999 2000 2001 Average						Average Annual Change		
District of Columbia	50,368.0	51,792.0	56,082.0	58,425.0	63,223.0			
Maryland	154,139.0	161,739.0	171,046.0	179,978.0	192,425.0			
Virginia	211,921.0	226,291.0	241,909.0	260,257.0	277,214.0			
Total	416,428.0	439,822.0	469,037.0	498,660.0	532,862.0			
Annual % Change		5.62%	6.64%	6.32%	6.86%	6.36%		

Table 3.2: Tri-State Trends - Gross State Product

Source: U.S Department of Commerce

Table 3-3 presents the total energy consumption for the Tri-State Area, and as the data highlights, the average rates of growth in energy consumption are much lower than the average rates of growth in economic activity. For the five-year period the average annual increase in energy consumption was less than one percent (0.85 percent), while the average annual percentage change in the GSP was 6.36 percent.

Table 3.3: Tri-State Trends- Energy Consumption

TABLE 3-3 Tri-State Trends Energy Consumption								
	Trillion Btu's 1997-2001							
	1997	1998	1999	2000	2001	Average Annual Change		
District of Columbia	182.7	181.3	181.1	186.5	168.2			
Maryland	1,376.0	1,377.6	1,415.1	1,433.6	1,420.4			
Virginia	2,217.6	2,251.9	2,298.1	2,386.3	2,314.6			
Total	3,776.3	3,810.8	3,894.3	4,006.4	3,903.2			
Annual % Change		0.91%	2.19%	2.88%	-2.58%	0.85%		

Source: Energy Information Agency

Table 3-4 provides a measure of "efficiency". With the rate of economic activity growing faster than the rate of energy consumption, in the Tri-State Area, it takes less and less energy to produce a hundred dollars' worth of economic activity.

TABLE 3-4						
Combined Gross State Product/Energy Consumption						
		1997-2001				
1997 1998 1999 2000						
\$110.27	\$115.41	\$120.44	\$124.47	\$136.52		

Table 3.4: Combined Gross State Product Energy Consumption

Compiled By: Jerome S. Paige & Associates

As Table 3-5 indicates, the average annual increase in energy prices in each of the states (4.67 percent, District of Columbia; 3.93 percent, Maryland; and 4.51 percent, Virginia) is higher than the rate of prices in general as measured by the CPI-U (Table 3-1).

Table 3.5: Tri-State Trends Energy Prices

TABLE 3-5								
Tri-State Trends								
Energy Prices								
\$per Million Btu's								
1997-2001								
						Average Annual		
	1997	1998	1999	2000	2001	Change		
District of Columbia	13.03	12.86	13.23	14.86	15.57	4.67%		
Maryland	10.46	10.12	10.46	12.11	12.09	3.93%		
Virginia	9.16	8.36	8.72	10.47	10.72	4.51%		

Source: Energy Information Agency

Table 3-6 shows that for the five-year period, energy expenditures have increased at an average rate of 5.01 percent. Keep in mind that for the *area* this was a period of "restructuring" of public utilities and as deregulation evolves price trends may change.

TABLE 3-6 Tri-State Trends							
		0,	ExpenditAillion \$	ules			
			997 - 2001				
	1997	1998	1999	2000	2001	Average Annual Change	
District of Columbia	1,347.8	1,285.2	1,309.9	1,533.9	1,479.3		
Maryland	9,650.2	9,208.3	9,814.1	11,581.7	11,455.5		
Virginia	13,529.7	12,413.1	13,191.4	16,505.9	16,290.2		
Total	24,527.7	22,906.6	24,315.4	29,621.5	29,225.0		
Annual % Change		-6.61%	6.15%	21.82%	-1.34%	5.01%	

Table 3.6: Tri-State Trends Energy Expenditures

As Table 3-7 highlights, energy expenditures as a percentage of Gross State Product ranged between 5 percent and 6 percent during the five-year period. This suggests that despite the increase in the energy expenditures, the Tri-State Area's economy was not adversely affected. As will be noted in other sections of this Regional Plan, one of the recommendations is to develop an "energy scorecard" to monitor the effect of energy consumption, expenditures, and prices on the MWCOG's Regional Economy.

<i>Table 3.7:</i>	Enerow	Expendi	tures/Gross	State	Product
Tuble J./.	Litergy	плренин	<i>ures/010ss</i>	Siule	TTOULL

TABLE 3-7							
Energy Expenditures/Gross State Product							
1997-2001							
1997	1997 1998 1999 2000 2001						
5.89%	5.89% 5.21% 5.18% 5.94% 5.48%						

Compiled By: Jerome S. Paige & Associates

Tri-State Energy Fuel Type and End Use

EIA defines and collects data on several primary fuels—electricity, natural gas, petroleum, wood and others – by price, consumption, and expenditure. For the Tri-State Area, petroleum is the primary fuel type.

TABLE 3-8									
Energy Consumption by Fuel Type 2001									
Million BTU's									
District of									
Fuel Type	Columbia	Maryland	Virginia	Total	Percentage				
Coal	0.70	317.20	482.40	800.30	20.50%				
Natural Gas	30.60	191.40	246.70	468.70	12.01%				
Petroleum	33.50	568.10	911.20	1512.80	38.76%				
Nuclear Electric Power	0.00	142.70	269.10	411.80	10.55%				
Hydro Electric Power	0.00	12.00	-12.50	-0.50	-0.01%				
Wind & Waste	1.10	28.00	93.20	122.30	3.13%				
Other	0.00	0.30	0.60	0.90	0.02%				
Electricity: Net Interstate									
Flows of									
Electricity/Losses	102.30	160.50	323.90	586.70	15.03%				
Total	168.20	1420.20	2314.60	3903.00					
Total Electricity					25.57%				

<i>Table 3.8:</i>	Energy Consumption	by Fuel Type, 2001
-------------------	--------------------	--------------------

The Tri-State data also suggests where policymakers in various jurisdictions will have to focus their energy policy efforts. Overall, the District and Maryland would have a primary focus on electricity conversely; Maryland and Virginia should focus on petroleum according to the data presented. This is not to suggest that the other fuels are unimportant, but if policymakers need to prioritize their efforts, the overall data suggests where to start.

TABLE 3-9Energy Consumption by Fuel Type, 2001Percentages						
Fuel Type	District of Columbia	Maryland	Virginia			
Coal	0%	22%	21%			
Natural Gas	18%	13%	11%			
Petroleum	20%	40%	39%			
Nuclear Electric Power	0%	10%	12%			
Hydro Electric Power	0%	1%	-1%			
Wind & Waste	1%	2%	4%			
Other	0%	0%	0%			
Electricity: Net Interstate Flows of						
Electricity/Losses	61%	11%	14%			

Table 3.9: Energy Consumption by Fuel Type and Type, 20	Table 3.9:	9: Energy Consumption	by Fuel Type	and Type, 2001
---	------------	-----------------------	--------------	----------------

Table 3-10 provides a guide to the relative importance of the end use sectors. Whereas, the District would need primarily a commercial strategy, Maryland would need a strategy that focuses on three of the four end use sectors – transportation, residential, commercial. Virginia would need a strategy that addresses all four of the sectors.

<i>Table 3.10:</i>	Tri-State Energy	Consumption
--------------------	------------------	-------------

	Tri-State E	CABLE 3-10 Energy Consump nd Use, 2001	tion			
Trillion BTU's District of Trillion BTU's						
	Columbia	Maryland	Virginia	Tri-State Total		
Residential	34.2	391.0	548.9	974.1		
Commercial	104.0	372.3	533.8	1,010.1		
Industrial	4.2	251.8	547.0	803.0		
Transportation	25.8	405.2	684.9	1,115.9		
	168.2	1,420.3	2,314.6	3,903.1		
		Percent				
Residential	20.3%	27.5%	23.7%	25.0%		
Commercial	61.8%	26.2%	23.1%	25.9%		
Industrial	2.5%	17.7%	23.6%	20.6%		
Transportation	15.3%	28.5%	29.6%	28.6%		
	100.0%	100.0%	100.0%	100.0%		

39%

20%

52%

Source: Energy Information Agency

Gasoline: One major concern is with the price and consumption of motor gasoline. In the District, 12 percent of its energy use is comprised of motor gasoline, with motor gasoline making up 61 percent of the District's petroleum consumption. In Maryland 22 percent of its energy use is comprised of motor gasoline; 54 percent of its petroleum use goes to motor gasoline. In Virginia, 20 percent of its total energy use is made up of motor gasoline, which comprises 52 percent of its total petroleum use. (See Table 3-11.)

Consumption, 2001
TABLE 3-11
Petroleum and Gasoline (Motor Fuel) as Percentages of Energy Consumption, 200

Table 3.11: Petroleum and Gasoline (Motor Fuel) as Percentages of Energy

20%

12%

61%

Consumption, 2001					
	TABLE 3-	11			
Petroleum and Gasoline (Motor Fuel) as Percentages of Energy Consumption, 2001					
	District of Columbia	Maryland	Virginia		
Petroleum as Percent of					

40%

22%

54%

Compiled By: Jerome S. Paige & Associates

Total Energy

Total Energy

Petroleum

Gasoline as Percent of

Gasoline as Percent of

Heating Oil: Another major concern is with the price and consumption of heating oil (distillate fuel) as planners try to access the effects of rising petroleum prices on the costs of heating.

In the District, 6 percent of its energy use is comprised of distillate fuel, with distillate fuel making up 29 percent of the District's petroleum consumption. In Maryland 9 percent of its energy use is comprised on motor gasoline; 24 percent of its petroleum use goes distillate. In Virginia, 10 percent of its total energy use is made up of distillate fuel, which comprises 25 percent of its total petroleum use. (See Table 3-12.)

Table 3.12: Petroleum and Gasoline (Motor Fuel) as Percentages of Energy Consumption, 2001

	District of Columbia	Maryland	Virginia
Distillate Fuel	6%	9%	10%
As A Percent of Total Energy			
As A Percent of Total Petroleum	29%	25%	25%
Compiled By: Jerome S. Paige & Associates			

TABLE 3-12Distillate Fuel as Percentages of Energy Consumption, 2001

In the Tri-State Area, the Residential Sector used 15.9 percent of the distillate fuel and 35.4 percent of the natural gas. See Tables 3.13-3.14.

Table 3.13: Tri-State Distillate Fuel

TABLE 3-13 Tri-State				
Distillate Fuel				
	by End Use See			
All Sectors	District of Columbia	Maryland	Virginia	Tri-State Total
		Trillion B	BTUs	
Total Distillate Fuel	9.7	134.8	228.9	373.4
Residential Sector	1.2	27.9	30.2	59.3
Commercial Sector	3.2	14.6	17.2	35.0
Industrial Sector	0.2	13.6	29.7	43.5
Transportation Sector	4.8	72.9	143.4	221.1
Electric Power Sector	0.3	5.8	8.4	14.5
Total	9.7	134.8	228.9	373.4
	Percer			
Residential Sector	12.4%	20.7%	13.2%	15.9%
Commercial Sector	33.0%	10.8%	7.5%	9.4%
Industrial Sector	2.1%	10.1%	13.0%	11.6%
Transportation Sector	49.5%	54.1%	62.6%	59.2%
Electric Power Sector	3.1%	4.3%	3.7%	3.9%
	100.0%	100.0%	100.0%	100.0%
Source: Energy Information Agency				

For the Tri-State Area over 66 percent of the natural gas is consumed in the residential and the commercial sectors. (See Table 3-14.)

	TABLE	3-14			
Tri-State End Use Sector					
Natural Gas					
	By End Use Se	ector, 2001			
All Sectors	District of Columbia	Maryland	Virginia	Tri-State Total	
Total Natural Gas		Trillion BTUs			
Residential Sector	13.3	79.8	72.9	166.0	
Commercial Sector	17.0	62.0	62.1	141.1	
Industrial Sector	0.0	28.4	69.4	97.8	
Transportation Sector	0.0	3.1	8.1	11.2	
Electric Power Sector	0.2	18.1	34.1	52.4	
	30.5	191.4	246.6	468.5	
	Percer	nt			
Residential Sector	43.6%	41.7%	29.6%	35.4%	
Commercial Sector	55.7%	32.4%	25.2%	30.1%	
Industrial Sector	0.0%	14.8%	28.1%	20.9%	
Transportation Sector	0.0%	1.6%	3.3%	2.4%	
Electric Power Sector	0.7%	9.5%	13.8%	11.2%	
	100.0%	100.0%	100.0%	100.0%	

Table 3.14: Tri--State End Use Sector Natural Gas

Source: Energy Information Agency

Only 11.2% of natural gas electricity is consumed by the Electric Power Sector. (See Table 3-14.)

	TABLE				
Tri-State End Use Sector					
Electricity					
	2001				
All Sectors	District of Columbia	Maryland	Virginia	Tri-State Total	
	Trillion B	STUS			
Residential Sector	5.7	81.9	127.1	214.7	
Commercial Sector	24.8	88.5	134.1	247.4	
Industrial Sector	1.0	33.0	66.4	100.4	
Transportation Sector	0.6	0.6	0.3	1.5	
Electric Power Sector	0.3	160.5	265.0	425.8	
Total	32.4	364.5	592.9	989.8	
	Percer	nt			
Residential Sector	17.6%	22.5%	21.4%	21.7%	
Commercial Sector	76.5%	24.3%	22.6%	25.0%	
Industrial Sector	3.1%	9.1%	11.2%	10.1%	
Transportation Sector	1.9%	0.2%	0.1%	0.2%	
Electric Power Sector	0.9%	44.0%	44.7%	43.0%	
	100.0%	100.0%	100.0%	100.0%	

Table 3.15: Tri-State End Use Sector Electricity

Summary

As the data reveals the Tri-State Area has become more energy efficient as it has been able to enjoy rates of economic growth while using less and less energy. While the economy seems able to absorb increases in energy expenditures, the MWCOG Region needs a system to monitor the ways in which increasing energy expenditures may adversely affect the economy. The data also reveals that the Tri-State Area uses very little "green" or non-renewable energy sources. While the Tri-State Area data suggests some broad areas on which to focus, the MWCOG Region could benefit from having MWCOG-specific energy data.

4. MOTOR FUEL CONSUMPTION, PRICE & EXPENDITURE TRENDS

This section of the Regional Energy Plan covers energy consumption and expenditures in the transportation sector of the Tri-State Area. Reducing energy consumption in transportation requires a combination of energy efficient motor vehicles, incentives to subsidize those choices, and high prices to discourage demand in order to achieve success. In addition there appears to be several major public finance issues related to the efficiency of the tax system; including ways to use the tax system in order to reduce demand and subsidize the transition to the New Energy Era.

Findings

- 1. Based on 2001 data over 50 percent of the petroleum sold in the Tri-State region is used for motor fuel. Consequently local demand and worldwide supply are significant drivers that govern the range of planning and policy options affecting gasoline consumption in the region.
- 2. A policy framework to consider ways to reduce gasoline consumption will include vehicle efficiency standards, commercial and commuting driving patterns, the tax system and potential supply disruptions.
- 3. Until recently, there had been little or no reduction in the demand for gasoline even as prices double and tripled over the past few years. However, starting in July 2005, the year-to-year demand for gasoline began to fall for the first time in several years, suggesting that sustained high prices were having an effect on behavior. One reason that high gasoline prices have only recently led to a reduction in consumption is the relatively low percentage of gasoline as a part of the total cost of vehicle ownership. Of note, motor fuel, along with motor oil, makes up approximately 20% of that cost.
- 4. Rising gasoline prices will have an effect on fuel use, transportation systems, households, businesses, government and the environment; however, the region does not have in place a framework to predict the effects of these changes and to respond proactively.
- 5. The outlook for fuel prices suggests that the cost of gasoline will not return to its pre-September 2005 levels.
- 6. An increase in the average miles per gallon of vehicles can reverse the demand for growth in gasoline and mitigate the effects on budgets of rising gasoline prices.

- 7. Area jurisdictions are experiencing rising motor fuel prices that are causing significant increases in operating costs.
- 8. Area jurisdictions have plans to promote the use of Alternative Fuel Vehicles (AFV's) in their governments and in their regions.
- 9. The Olson Regional Plan calls for a rise in motor fuels taxes in order to use the price of gasoline as a meaningful behavior modification signal. This Plan holds that such a signal would help motorists shift to more energy efficient vehicles; engage in energy conservation behaviors; keep energy dollars in the region, thus making the motor fuel tax a more fiscally productive tax; and improve the environment.
- 10. The Energy Policy Act of 2005 contains the following provisions:
 - a. The energy bill extends an existing tax credit, for up to \$4,000, for buyers of electric vehicles or those powered by rechargeable batteries.
 - b. Starting in 2006, hybrid-car buyers and advanced lean-burn technology vehicles will be eligible for tax credits ranging from \$1,700-\$3,000. This credit is tied with two components: hybrids that save the most fuel compared with 2002 models and the vehicle's estimated lifetime fuel savings.
 - c. The amount of credit for the purchase of a fuel-cell vehicle is determined by a base credit amount that depends upon the weight class of the vehicle and, in the case of automobiles or light trucks, an additional credit amount that depends upon the rated fuel economy of the vehicle compared to a base fuel economy.
 - d. For fuel-cell-powered vehicles weighing less than 8,500 pounds, the base credit is approximately \$8,000 heavier vehicles will get larger credits.
 - e. Credits are offered for cars and light trucks that are more fuel-efficient than 2002 models. (A tax credit gives the taxpayer a dollar-for-dollar reduction in his or her taxes.)
 - f. A provision permits taxpayers to claim a 30% credit for the cost of installing clean-fuel vehicle refueling property to be used in a trade or business of the taxpayer or installed at the principal residence of the taxpayer.
 - g. Under the provision, clean fuels are considered any fuel with at least 85% of the volume that consists of ethanol, natural gas, compressed natural gas, liquefied petroleum gas, and hydrogen and any mixture of diesel fuel and biodiesel containing at least 20% biodiesel (Provision is effective for property placed in service 12/31/2005 and before 01/01/2010).

Recommendations

Recommendation: 4.1	To reduce the growth in motor fuel consumed and at the same		
	time accommodate continued economic growth and improve the		
	environment will take a combination of:		
	1. Higher gasoline prices		
	2. Increased education to remind drivers to approach the		
	use of their vehicles more wisely		
	3. Continued promotion of the use of public transportation		
	4. Increased average miles per gallon of cars and trucks		
	5. A change in the way motor fuel taxes		

Discussion

With the rapid increase in the prices of gasoline, we see households, businesses, and governments trying to adjust to these price increases. With what appears to be a very high price inelasticity of demand for gasoline, rapid price increases have not led to major reductions in miles driven. That suggests that non-gasoline consumption will be going down. However, if we were to see significant reductions in gasoline consumption, then that will have an effect on the amount of tax revenue collected, which suggests that local governments could be faced with both rising energy prices and declining revenues from gasoline taxes. Likewise, overall economic activity could be adversely affected.

Prior to Hurricane Katrina, many news articles highlighted that, adjusted for inflation, today's prices per gallon of gas (and energy prices in general) are still below their 1981 peak. This fact, while true, obscures the challenge of rising total expenditures on gasoline and the difficulty of people, governments, and businesses in shifting to alternatively-fueled forms of transportation.

- 1. For example, if the total miles driven are up and average miles per gallon are the same or higher, then total expenditures are up because people are driving more. Anecdotal reports suggest that what really seems to motivate motorists is the cost of filling up a tank. Further, the cost to fill up provides for an easier handle to register than the effect of price increases. It is one thing to talk about \$3.00 a gallon; and another, to talk about \$45.00 to fill up the gas tank. People have a real sense of what \$45.00 will purchase compared to \$3.00.
- 2. Also, having already made locational and consumption decisions, these decisions are hard for end users to reverse.

3. Information from the Energy Information Administration, as well as seasoned market-watching groups such as Oil Price Information System (OPIS), indicates that hurricane-driven prices will return to the mid-two dollar range sometime in the fall. If this prediction holds, another interesting, psychological, phenomenon may take place. Having faced several months of three dollar plus costs, motorists may actually feel good about a return to two dollar pricing, ignoring the broader reality that such prices are still relatively high.

Until recently, one conclusion that can be drawn from gasoline price increase data is that gasoline prices while, widely talked about, don't affect gasoline consumption and therefore the "market" and the "economy" are handling the price increase quite well. And if the experience from other countries, like England, is indicative, gasoline prices may rise even higher before alternatives are sought. Ironically, in the case of gasoline consumption, the last place we might see the effect of rising fuel prices will be in the reduction of miles driven. This suggests that the effects of increased prices for gasoline will appear elsewhere in the economy first.

As noted above, with the demand for gasoline being price inelastic, it's going to take really high prices or something other than high prices to change gasoline consumption patterns. If prices get to the point where they begin to reduce driving, then the whole regional economy will have big challenges, with driving being amongst the least of the challenges facing the region.

A Policy Framework for Reducing the Consumption of Motor Fuels

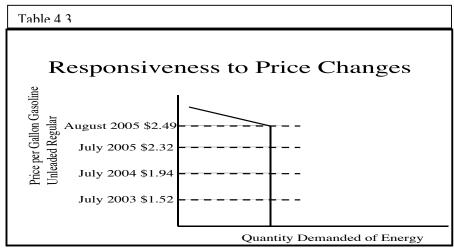
Since over 50 percent of the petroleum used in the Tri-State region is for motor fuels, local demand and worldwide supply help shape the range of planning and policy options for the region. The matrix summarized in Table 4-1 provides an overview of the policy discussion framework. This framework includes vehicle efficiency standards, commercial and commuting driving patterns, the tax system and potential supply disruptions. The framework also includes several policy tools – which are standards to improve vehicle efficiency, prices to guide choices, taxes to shift demand, taxes to raise dedicated revenues, and plans to manage short-term supply disruptions. The goals of these policy tools vary – improving environmental quality, managing the differential effects on households, businesses and government, strengthening the regional economy, improving the productivity of the tax system, managing temporary supply shortages, expanding the use of alternative fuel vehicles, and promoting efficiency and conservation.

TABLE 4-1					
Gasoline Policy Discussion Framework					
Over 50% o	of the petroleum	n used in the Tri-State region is fo	or motor fuels		
Policy Area	Policy Tool	Consideration	ons		
Vehicle Miles Per Gallon (Efficiency)	Standards to improve vehicle efficiency	The role of mileage standards in reducing the demand for petroleum	Improving Environmental Quality		
Behavior (Commercial/ Commuting Practices)	Prices to Guide Choices	The role of relatively high prices in reducing the demand for gasoline, since trends suggest it has only been since July 2005, after three years of rising gasoline prices that gasoline sales have begun to decline	Managing Differential Effects on Income, Business, and Government Groups		
	Taxes to Shift Demand	The role of motor fuel taxes to shift demand and to keep energy dollars from flowing out of the region	Strengthening the Regional Economy		
Tax System	Taxes to Raise Dedicated Revenue	 The adverse effect on tax collection due to reduced gasoline consumption: because increasing gasoline prices lead to a reduction in gasoline purchased and because the amount of tax collected varies with volume sold, not with price 	Improving Productivity of Tax System		
Supply Disruptions	Regional Plans to Allocate Supplies if a Shortage Occurs	The potential for short-term shortages since the worldwide demand for petroleum is increasing faster than worldwide supply	Managing Temporary Shortages Expanding Use of Alternative Fuels		
Source: Jerome S. Paioe			Promoting Efficiency & Conservation		

Table 4.1: Gasoline Policy Discussion Framework

Source: Jerome S. Paige & Associates

TABLE 4-2							
Tri-State Petroleum Consumption, 2001							
District of Columbia Maryland Virginia							
Million BTU's							
Total Energy Consumption	168.2	1420.2	2314.6				
Petroleum Consumption	33.5	191.4	911.2				
Petroleum/Total Energy	20%	13%	39%				
Million BTU's							
Motor Fuel	20.3	308.8	473				
Distillate Fuel	9.7	134.8	228.9				
Other	3.5	124.5	209.3				
Total Petroleum	33.5	568.1	911.2				
Percentage of Petroleum Consumption							
Motor Fuel							
Distillate Fuel	29%	24%	25%				
Other	10%	22%	23%				
Total Petroleum	100%	100%	100%				


Table 4.2: Tri-State Petroleum Consumption—2001

Source: US Energy Information Administration (EIA)

Based on this data, if the Tri-State Region is going to reduce its reliance on petroleum, it will require people and businesses to drive less and/or to purchase vehicles that are increasingly fuel efficient. See Table 4-2.

Until mid-Summer 2005, nationally, the demand for gasoline has been either constant or increasing even while prices were increasing. Table 4-3 provides an illustration of the relative non-responsiveness of demand to increases in prices. The July 2005 price of a gallon of gas (\$2.32/gal) was 52 percent higher than the July 2003 price (\$1.52/gal).

Table 4.3: Diagram "Responsiveness to Price Changes"

Source: Jerome S. Paige & Associates

Regional Gasoline Prices

Average gasoline prices in the Metropolitan Region are roughly 5 percent higher than the national average. See Table 4-4, and Table 4-5.

 Table 4.4: Washington Unleaded Average (Entire Metro Average)

	TABLE ican Automobile Unleaded Averag October 4	Association (ge (Entire Me		
	Dogular	Mid	Premium	Diesel
Current	Regular \$3.087	\$3.260	\$3.365	\$3.208
Yesterday	\$3.087	\$3.259	\$3.365	\$3.199
Month Ago	\$3.208	\$3.386	\$3.497	\$3.012
Year Ago	\$1.911	\$2.017	\$2.083	\$2.072
Annual % Change	61.54%	61.63%	61.55%	54.83%
Highest Recorded Price:				
Regular Unl.	\$3.23	9/6/05		
DSL.	\$3.21	10/4/05		

Source: American Automobile Association (AAA)

	TADI			
		LE 4-5		
Ame	erican Automobi			
		eaded Average		
	October	r 4, 2005		
	Regular	Mid	Premium	Diesel
Current Avg.	\$2.94	\$3.12	\$3.24	\$3.15
Yesterday Avg.	\$2.94	\$3.12	\$3.23	\$3.13
Month Ago Avg.	\$3.06	\$3.24	\$3.36	\$2.96
Year Ago Avg.	\$1.93	\$2.04	\$2.12	\$2.06
Annual % Change	52.70%	52.74%	52.59%	,53.23%
Highest Recorded Price:				
Regular Unleaded.	\$3.06	9/5/05		
DSL.	\$3.15	10/4/05		
*Prices are in US dollars per	r gallon			
http://www.fuelgaugereport.	.com/index.asp			
Last Visited 10/4/05				
Source: American Automobile As	$a = a = \frac{1}{2} \frac{1}$			

 Table 4.5: National Unleaded Average

Source: American Automobile Association (AAA)

As gasoline prices rise, the local economy has absorbed the increases because of the economy's robustness. Yet, if business and government budgets are not expanding, the effect of the price increases will show up elsewhere within the region's economy. Alternatively, while the regional economy has been able to manage rising gasoline prices, the effects will be felt differentially among various sectors. Table 4-6 provides some effects to consider as gasoline prices continue to rise.

TABLE 4-6							
RA	RANGE OF EFFECTS OF RISING GASOLINE PRICES						
Transportation	Household	Business	Government	Environment			
Reduced Gasoline	Reduced	Reduction in	Increase cost	Less air			
Usage	shopping &	business	of operations	pollution			
	eating out	volume					
Reduction in	Reduced	Reduction in	Reduction in	Greater air			
Inefficient	consumption of	business	Services	quality			
Vehicles	other important	receipts		compliance			
	items like						
	medicine						
Greater Transit	Increased	Reduced	Reduction in				
Use	delinquencies in	profit	motor fuel				
 Metro Rail 	monthly	margins	taxes				
• Metro Bus	payments						
 Local Bus 							
More Carpooling	Increased	Increased	Increase in				
	number of	prices if	requests for				
	households	market will	energy				
	needing energy	allow higher	assistance				
	assistance	energy costs					
		to pass					
Committed Days Lowers	C Duine & Anne sinter	through					

<i>Table 4.6</i> :	Range	Of Effects	of Rising	Gasoline Prices
--------------------	-------	------------	-----------	-----------------

Compiled By: Jerome S. Paige & Associates

Based on national data since July 2005, it appears that the price for a gallon of gasoline needs to rise to about \$3.00 before there is a reduction in gasoline consumption, suggesting that relatively high prices must be present in order to change consumption behavior. The reduction in the amount of gasoline consumed will improve air quality; however, there will be differential effects on households, businesses and government that should be considered.

Price Outlook

The short-term and long-term outlook for petroleum prices suggests that gasoline prices will remain at historically high levels. See Table 4-7.

				TABL	E 4-7				
				Price Sur	mmary				
			0.	nformatio					
		Shor		nergy Outl	1		005		
				used Septe					
	1		Next U	Jpdate: Oc	tober 12,	2005			
							Percent Change		
		2003	2004	2005	2006	03-04	04-05	05-06	03-06
WTI Crude									
(\$/barrel)	а	\$31.12	\$41.44	\$58.77	\$63.46	33.2%	41.8%	8.0%	103.9%
Gasoline (\$/gal)	b	\$1.56	\$1.85	\$2.33	\$2.40	18.6%	25.9%	3.0%	53.8%
Diesel (\$/gal)	с	\$1.50	\$1.81	\$2.41	\$2.50	20.7%	33.1%	3.7%	66.7%
Heating Oil									
(\$/gal)	d	\$1.36	\$1.54	\$2.09	\$2.26	13.2%	35.7%	8.1%	66.2%
Natural Gas									
(\$/mcf)	d	\$9.51	\$10.74	\$13.03	\$15.33	12.9%	21.3%	17.7%	61.2%
a-West Texas Int	ern	nediate.							
b-Average regula	ır p	ump price	2.						
c-On Highway retail.									
d-Residential Av	d-Residential Average.								
http://www.eia.de	oe.	gov/emeu	/steo/pub/	contents.h	tml				
Last visited Octo	ber	4, 2005							
Courses LIC Domester		6.5							

Table 4.7: Price Summary; Short Term Outlook—September 2005

Source: US Department of Energy

Effect of Vehicle Efficiency on Gallons of Gasoline Consumed

Given alternative assumptions, the spending on motor fuel can be estimated. While motor fuel comprises a relatively small percentage of the energy consumed in the Tri-State Area, motor fuel's importance is magnified because it is crucial to moving people, goods, and services throughout the region. It is believed that the increased spending on motor fuel means that at some point spending on non-motor fuel goods and services will diminish.

By relying on published data about vehicle miles traveled and motor oil consumed, and by adjusting that data, estimates of the demand for gasoline in the region can be made. Note that this model is preliminary and it remains under review. For the MWCOG Region, an increase in average miles per gallon will result in a reduction in gasoline consumed. See Table 4-8.

TABLE 4-8							
	Summary	Gasoline C	onsumptior	n Estimator			
					Reduction	Reduction	
	1994	2002	2005	2015	Gallons	Percent	
Scenarios	Gasoline G	allons Cons	sumed by Y	ear/ Select	Jurisdiction	s*	
14 mpg	9,127,044	11,010,537	11,730,459	14,011,212			
20 mpg	6,388,930	7,707,376	8,211,321	9,807,849	-4,203,363	-30.00%	
30 mpg	3,303,626	3,965,376	4,244,154	4,853,729	-4,954,120	-50.51%	
14 mpg	9,127,044	11,010,537	11,730,459	14,011,212			
30 mpg	3,303,626	3,965,376	4,244,154	4,853,729	-9,157,483	-65.36%	
			-		-		

 Table 4.8: Gasoline Consumption Estimator

Compiled By: Jerome S. Paige & Associates

* Prince Georges Frederick, Charles, Calvert, Arlington, Alexandria, Fairfax, Louden, Price William, Stafford Counties, and the District of Columbia.

Effect of Vehicle Efficiency on Gasoline Operating Costs

At the average price per gallon for the region on October 5, 2005 (\$3.09 per gallon), an increase in vehicle energy efficiency to 25 mpg from 15 mpg, will result in a reduction in the per mile costs of gasoline to 12 cents per mile (\$3.09 per gallon divided by 25 mpg) from 21 cents per mile (\$3.09 divided by 15 mpg).

- 1. If a vehicle is driven 50,000 per year and it gets 15 mpg, then it will use 3,333 gallons of gasoline per year, at a cost of \$10,300 (\$3.09 per gallon times 3,333 gallons).
- 2. If the efficiency of the vehicle rises to 25 mpg, then will take 2,000 gallons to operate the vehicle (50,000 divided by 25 mpg), at a cost of \$6,180 (2,000 gallons times \$3.09 gallons).
- 3. The annual savings in gasoline expenditures is \$4,120 (\$10,300 less \$6,180).
- 4. If the replacement costs are an additional \$5,000, then it would take 1.21 years to recoup those additional costs (\$5,000 divided by \$4,120).
- 5. The annualized rate of return on the additional \$5,000 expenditure would be 68% (\$4,120 divided by 1.21 years).

Effect of Reduction of Gasoline on Motor Fuel Tax Collections

In the region, the motor fuel tax rates range between 16 cents per gallon to 24.5 cents per gallon, depending on the state and the type of fuel which excludes aviation fuel. See Table 4-9. Motor Fuel Taxes tend to be dedicated taxes. The tax is collected by the states and allocated to regional jurisdictions for projects on their areas.

TABLE 4-9						
Motor Fuel Tax Rates						
Gasoline Diesel Aviation						
20	20	N/A				
23.5	24.5	0.7				
17.5	16	N/A				
*Plus 0.6-cpg petroleum storage tank fee and 2% sales tax on motor fuels in localities						
that are part of the Northern Virginia Transportation District						
Federal Tax=18.4 cpg						
	Motor Fuel Gasoline 20 23.5 17.5 m storage tank fee and	Motor Fuel Tax RatesGasolineDiesel202023.524.517.516m storage tank fee and 2% sales tax on motorthern Virginia Transportation District				

Table 4.9: Motor Fuel Tax Rates

Compiled By: Jerome S. Paige & Associates

Although the amount of taxes collected vary with the volume of gasoline sold (except for the Northern Virginia Transportation District), the falling motor fuel rates will reduce the dedicated funds available to the jurisdictions.

Effects of Motor Fuel Taxes to Shift Demand: Olson Regional Plan

On September 30, 2005, MWCOG sponsored a symposium on the "Impacts of Rising Gasoline Prices". At that event, Dr. Charles Olson – Director of Business Honors; and Business & Public Policy at the University of Maryland outlined a regional plan to reduce gasoline consumption, improve air quality and improve the efficiency of the motor fuels tax system for jurisdictions. Some of the elements of the "Olson Plan" are included in this report.

The Olson Regional Plan calls for a rise in motor fuels taxes in order to use the price of gasoline as a meaningful behavior modification signal. This Plan holds that such a signal would help motorists shift to more energy efficient vehicles; engage in energy conservation behaviors; keep energy dollars in the region, thus making the motor fuel tax a more fiscally productive tax; and improve the environment.

The Olson Regional Plan is a proposal to use the tax on motor fuels as a way:

- 1. To use the price of gasoline as a signal to consumers to shift to more energy efficient vehicles,
- 2. To use the price of gasoline as a signal to engage in energy conservation behaviors,
- 3. To make the motor fuel tax a more fiscally productive tax,
- 4. To keep energy dollars in the regional economy,
- 5. To improve the environment through the reduction of gasoline.

The Olson Regional Plan

The District of Columbia, Maryland, and Virginia act to increase motor fuel taxes on gasoline and diesel fuels by 15 cents per gallon in 2006, followed by a 2 cent per gallon increase for each year from 2007 to 2011. After 2011, taxes will rise each year by the Consumer Price Index plus one percent.

Disadvantages:

- Higher fuel prices
- Some sales leakage to Border States
- Greater impact on lower income families

Advantages:

- Higher pump price is an efficient and easy way to collect taxes
- Areas requires transportation infrastructure improvements
- Higher pump prices will speed conversion both in terms of short-term effects (transit, pooling, fewer trips) and long-term (vehicle conversion)
- Air pollution will be reduced with reduced usage, more efficient vehicles and better transportation systems
- The region will make the transition to more efficient transportation more quickly than other areas
- A greater percentage of the gasoline/diesel revenue flow will remain in the United States and the region

Conclusions:

- Transportation infrastructure is essential
- The gasoline/diesel tax is an efficient way to collect revenue to finance regional highway and transit construction and maintenance
- Government should act responsibility to keep up these collections in response to lower usage levels

Summary

As noted, the reduction of energy consumption by the transportation sector requires a combination of energy efficient motor vehicles, incentives to subsidize those choices, and high prices to discourage demand. In addition, there are major public finance issues related to the efficiency of the tax system and consensus on ways to use the tax system to reduce demand and to subsidize the transition to the New Energy Era.

5. DISTILLATE AND NATURAL GAS CONSUMPTION, PRICE AND EXPENDITURE TRENDS FOR HOUSEHOLDS

This section of the Regional Energy Plan surveys household energy consumption and expenditure data in an effort to reduce energy consumption within the residential sector. There appears to be a need to combine energy efficient options in order to discourage excessive demand within the residential sector. These policies will require financial subsidies to mitigate the effect of high energy prices on low and moderate income households.

Findings

Distillate Fuel-2001

- 1. For the Tri-State Region, Number 2 Heating Oil (distillate) comprised 9.6 percent of all energy consumed.
- 2. For the District, distillate comprised 29 percent of the area's petroleum use; for Maryland, it was 24 percent and for Virginia, 25 percent.
- 3. For the District, expenditures on distillate totaled \$82.6 million; for Maryland, \$1,954.5 million; and for Virginia, \$3,291.9, for a total of \$3,291.9 million.

Natural Gas-2001

- 4. For the Tri-State Region, natural gas comprised 12 percent of all energy consumed.
- 5. For the District, natural gas comprised 18.2 percent of all energy consumed; for Maryland, it was 13.5 percent; and for Virginia, 10.7 percent.
- 6. For the District, expenditures on natural gas totaled \$363 million; for Maryland, \$1,890.58 million; and for Virginia, \$1,916.8 for a total of \$4,170.3 million.

By comparison, it is also useful to look again at Electricity in 2001

- 7. For the Tri-State Region, electricity comprised 15 percent of all energy consumed.
- 8. For the District, electricity comprised 61 percent of all energy consumed; for Maryland, it was 11 percent; and for Virginia, 14 percent.

9. For the District, expenditures on electricity totaled \$740.1 million; for Maryland, \$3,983.3 million; and for Virginia, \$5,928.4, for a total of \$10,651.8 million.

Current Energy Challenges

- 10. Current projections for winter fuel bills suggest these bills to rise as much as 100 percent. These increases along with the projected high prices of gasoline estimate a very difficult energy costs situation.
- 11. The major driver of the use of distillate fuel and natural gas is the number of degree days, particularly the number of degree days in the winter.
- 12. Changes in energy behavior can have a major effect on reducing the demand for heating fuels.
- 13. If the costs and weather projections hold, there will be an increase in the number of households needing energy assistance.

Recommendations

Recommendation 5.1	Develop a data collection framework to provide current data on household energy consumption, expenditures and prices.
Recommendation 5.2	Increase promotion of options and incentives that residential consumers have in making housing and appliance energy choices.
Recommendation 5.3	Develop a monitoring system to assess the direct and indirect effects of high energy prices for households.

Discussion

As noted in the data below, the residential sector consumes 25 percent of all energy in the Tri-State Region. As outline in Table 5-1, these price increases can have several effects. Table 5-1 also highlights, several ways in which households can be encouraged to reduce energy consumption. With policies in place to improve the energy efficiency of houses (and vehicles), consumers are expected to replace these items over time, thereby reducing energy consumption. In addition, financial incentives can reduce the costs of these purchases and speed the rate of vehicle and appliance replacement. One major factor that will accelerate the process is high energy prices. Consequently, several governments will be exploring the extent to which taxes can be used to keep energy prices high. In doing that, analyst believe that public funds may be collected to help smooth out the transition process.

	TA	ABLE 5-1			
HEATIN	NG/COOLING FUEL PO	OLICY DISCUSSION FRA	MEWORK		
25% of the en		te region is for natural gas an			
Policy Area	Policy Tool	Considerat			
Building Energy Efficiency Standards	Standards to improve energy efficiency of structures	The role of the building codes in fostering energy efficiency			
Appliance Efficiency Standards	Standards to improve energy efficiency of appliances	The role of the appliance e in fostering energy efficier	2		
Behavior	Prices to Guide Choices	The role of relatively high prices in encouraging consumers to engage in wise energy practices	Improving Environmental Quality Managing Differential Effects on		
	Education/Awareness to Guide Choices		Income, Business, and Government Groups Strengthening the Regional Economy		
Tax System	Tax Incentives for Energy Efficiency	Using taxes as incentive to purchase energy efficient housing and appliances and using taxes as a way to reduce energy consumption			

Table 5.1: Heating/Cooling Fuel Policy Discussion Framework

Compiled By: Jerome S. Paige & Associates

Tri-State Residential Consumption--2001

In 2001, residential energy consumption comprised 25 percent of all energy consumed in the Tri-State Area. For the District, the percentage consumed was 20.3; the percentage for Maryland was, 27.5; and for Virginia, 23.7 percent. See Table 5-2.

	Т	TABLE 5-2		
	Tri-State E	Energy Consumpt	tion	
		End Use		
		2001		
	District of Columbia	Tri-State Total		
			Trillion BTUs	
Residential	34.2	391.0	548.9	974.1
Commercial	104.0	372.3	533.8	1,010.1
Industrial	4.2	251.8	547.0	803.0
Transportation	25.8	405.2	684.9	1,115.9
	168.2	1,420.3	2,314.6	3,903.1
			Percent	
Residential	20.3%	27.5%	23.7%	25.0%
Commercial	61.8%	26.2%	23.1%	25.9%
Industrial	2.5%	17.7%	23.6%	20.6%
Transportation	15.3%	28.5%	29.6%	28.6%
	100.0%	100.0%	100.0%	100.0%

Table 5.2: Tri-State Energy Consumption (End Use)

In the Tri-State Area, the Residential Sector used 15.9 percent of the distillate fuel; 35.4 percent of the natural gas; and 15.9 percent of the natural gas. See Tables 5-3 and 5-4.

	TABLE Tri-State End U				
	Distillate				
	2001	ruei			
All Sectors District of Columbia Maryland Virginia T					
		Trillion I	BTUs		
Total Distillate Fuel	9.7	134.8	228.9	373.4	
Residential Sector	1.2	27.9	30.2	59.3	
Commercial Sector	3.2	14.6	17.2	35.0	
Industrial Sector	0.2	13.6	29.7	43.5	
Transportation Sector	4.8	72.9	143.4	221.1	
Electric Power Sector	0.3	5.8	8.4	14.5	
	9.7	134.8	228.9	373.4	
		Perce	nt		
Residential Sector	12.4%	20.7%	13.2%	15.9%	
Commercial Sector	33.0%	10.8%	7.5%	9.4%	
Industrial Sector	2.1%	10.1%	13.0%	11.6%	
Transportation Sector	49.5%	54.1%	62.6%		
Electric Power Sector	3.1%	4.3%	3.7%	3.9%	
	100.0%	100.0%	100.0%	100.0%	

 Table 5.3: Tri-State End Use Sector (Distillate Fuel)

TABLE 5-4 Tri-State End Use Sector					
	Natural (
	2001	Jas			
All Sectors	District of Columbia	Maryland	Virginia	Tri-State Total	
	30.6	191.4	246.7		
Total Natural Gas		Trillion I	BTUs		
Residential Sector	13.3	79.8	72.9	166.0	
Commercial Sector	17.0	62.0	62.1	141.1	
Industrial Sector	0.0	28.4	69.4	97.8	
Transportation Sector	0.0	3.1	8.1	11.2	
Electric Power Sector	0.2	18.1	34.1	52.4	
	30.5	191.4	246.6	468.5	
		Perce	nt		
Residential Sector	43.6%	41.7%	29.6%	35.4%	
Commercial Sector	55.7%	32.4%	25.2%	30.1%	
Industrial Sector	0.0%	14.8%	28.1%	20.9%	
Transportation Sector	0.0%	1.6%	3.3%	2.4%	
Electric Power Sector	0.7%	9.5%	13.8%	11.2%	
	100.0%	100.0%	100.0%	100.0%	

Table 5.4: Tri-State End Use Sector (Natural Gas)

Removing the electricity sector from the analysis, the residential sector consumed about 38 percent of the electricity in the Tri-State Region. See Table 5-5.

	TABLE									
Tri-State End Use Sector Electricity 2001										
						All Sectors	District of Columbia	Maryland	Virginia	Tri-State Total
								Trillion BTUs		
Residential Sector	5.7	81.9	127.1	214.7						
Commercial Sector	24.8	88.5	134.1	247.4						
Industrial Sector	1.0	33.0	66.4	100.4						
Transportation Sector	0.6	0.6	0.3	1.5						
Electric Power Sector	0.3	160.5	265.0	425.8						
Totals	32.4	364.5	592.9	989.8						
		Percent								
Residential Sector	17.6%	22.5%	21.4%	21.7%						
Commercial Sector	76.5%	24.3%	22.6%	25.0%						
Industrial Sector	3.1%	9.1%	11.2%	10.1%						
Transportation Sector	1.9%	0.2%	0.1%	0.2%						
Electric Power Sector	0.9%	44.0%	44.7%	43.0%						
	100.0%	100.0%	100.0%	100.0%						

Table 5.5:.Tri-State End Use Sector (Electricity)

At the federal, state, and regional levels, concerns are high surrounding the effects of high energy prices on low and moderate income households. While regional jurisdictions have access to funds to assist these households with their energy bills, the potential widespread effects from higher energy prices could pose a number of challenges for individuals, governments and businesses. In Table 5-6 some of those possible effects are outlined; some negative, others positive.

TABLE 5-6					
RANGE OF EFFECTS OF INCREASING					
HEATING OIL AND NATURAL GAS PRICES					
Household	Business	Government	Environment		
Increased	Reduced	Increased number of	Less air pollution		
delinquencies in	shopping &	households needing			
monthly payments	eating out	energy assistance			
	Reduced consumption of other important items like medicine				

Table 5.6: Tri-State End Use Sector

Source: Jerome S. Paige & Associates

During the 2002-2003 winter heating season, the DC Energy Office conducted a pilot with children in school to assess the effects of energy consumption that including smart energy choices. The DCEO received permission from 97 families to have the electric and gas companies send records of energy consumption in 2001-2002 and 2002-2003 for comparison. These energy records became a proxy for a pre-test – energy consumption before the program – and a post-test – energy consumption after the program.

Of the 97 accounts analyzed, 46 (48 percent) were gas accounts and 51 (52 percent) were electric accounts. Students were provided with low-cost energy conservation supplies like radiator reflectors, caulking, and insulation to plug small leaks. They were given instructions on how to install the items and the wise use of energy such as limiting the amount of time a refrigerator door remained open. The school children were provided incentives to participate in the pilot evaluation.

Of the 41 gas accounts analyzed, overall consumption was reduced by 5.77 percent. Over one-half of the households 54 percent (22 out of 41) reduced consumption, and of the 54 percent, the average reduction in household consumption was 24 percent (weather adjusted).

Of the 56 electric accounts analyzed, consumption was reduced as well. Overall, 32 percent (18 out of 56) of households reduced consumption, and of that 32 percent, the average reduction in household consumption was 14 percent (not weather adjusted)

This Pilot Program suggests Energy Efficiency Education Programs:

- Raise Energy Awareness of Students & Parents
- o Modify Energy Behaviors of Students & Parents
- Reduce Household Emery Consumption
- Reduce Household Energy Expenditures

Summary

As noted in this chapter, to reduce energy consumption by the residential sector there needs to be a combination of energy efficient options (appliances, and buildings) that include incentives to subsidize those choices and high prices to discourage demand. These policies may be supplemented with financial subsidies to mitigate the effect of high energy prices on low and moderate income households.

6. A REGIONAL ENERGY DATA DRIVEN APPROACH TO POLICYMAKING

This section of the Regional Energy Plan presents a model of how to develop regional energy data for policy formulation. The development includes planning and the assessment of the region's progress as it relates to the reduction of energy consumption. Since the state-level data from the Energy Information Agency (EIA) cannot be disaggregated to the regional level, this section of the Regional Energy Plan provides a framework for exploring ways to develop regional energy data for policy and planning activities and to measure the energy performance of the region. Such a framework would assist the Region with its energy security planning as well.

Findings: An Energy Data Driven Approach to Policymaking

- 1. Currently, there is no sound methodology in place to collect regional data on energy price, consumption, and expenditures for the Metropolitan Washington Council of Government's region.
- 2. As a result, policymakers have no way to numerically assess the regional economic and social impacts of changes in energy prices, consumption, and expenditures for planning purposes.
- 3. If the patterns of energy price, consumption, and expenditures by jurisdiction throughout the region are similar to those in DC, Virginia and Maryland, then we would expect that the region has become more energy efficient.
- 4. The MWCOG has not assessed the results of its previous energy planning activities.
- 5. The MWCOG has taken few, consistent steps to develop a regional profile of its energy consumption, prices, and expenditures.
- 6. Currently there is no methodology in place to access the effects of changes in energy prices, consumptions and expenditures on the region.

Recommendations

Recommendation 6.1	Institute a process that will allow the region to monitor its energy price, consumption and expenditure data as a basis for regional energy planning to reduce energy dependency on non- renewable resources and strengthen the competitiveness of the regional economy.
Recommendation 6.2	 Develop a region-wide monitoring system that addresses how the region is adjusting to the new energy era. This monitoring system would: 1. Identify policy gaps that might exist and suggest policies that might need to be developed to adjust the transition process. 2. Assess and guide the economic and social adjustment processes that households, businesses, and governments will have to make in this era of relatively expensive energy.
Recommendation 6.3	Create a working group among energy suppliers to develop a reporting mechanism similar to the system used by the Energy Information Agency. Such a system would be region-specific and updated frequently.
Recommendation 6.4	Develop an executive level scorecard that keeps policymakers apprised on how the region is managing the adjustment towards the new energy era.

Discussion: A Regional Energy Data-Driven Approach to Policymaking

The US Energy Information Agency (EIA) provides one of the major sources of data on energy prices, consumption and expenditures. EIA develops data at the federal and the state level, with the District of Columbia being a state for the purposes of data collection, reporting and analysis. However, to date no sound methodology exists for reporting data at the sub-state level. State trends can be compared, but sub-state information (e.g. the Metropolitan Council of Government's region) cannot be analyzed using the EIA data.

A major challenge facing planners and policymakers is the inability to adequately assess and guide the economic and social adjustments that households, businesses, and governments must possess during this era of relatively expensive energy. Of particular concern is transportation and its correlation on the above referenced users. As the Metropolitan Washington Region moves from an era of regulated and relatively inexpensive energy to an era where energy is deregulated and relatively expensive, planners and policymakers must grapple with assessing the effects of these changes on the budgets of households, businesses and governments and on regional economic activity.

For example, with the rapid increase in the price of gasoline, we see households, businesses, and governments trying to adjust as price increases. With what appears to be a very high price inelasticity of demand for gasoline, rapid price increases have not led to major reductions in vehicles miles driven. This suggests that non-gasoline consumption will go down. However, if we were to see significant reductions in gasoline consumption, then that will in turn effect on the amount tax revenue collected. This suggests that local governments could be faced with both rising energy prices and declining tax revenues. Likewise, overall economic activity could be adversely affected.

Sections 6.1 through 6.3 provide a general overview (i) of the region's gas and electricity consumption; (ii) a gasoline estimator and (iii) an energy intelligence system. These sections demonstrate the impacts of each including the region and MWCOG.

6.1 REGIONAL GAS & ELECTRICITY CONSUMPTION

This section provides examples of regional natural gas and electricity consumption and price information by the following sectors:

- 1. Commercial
- 2. Government
- 3. Residential

Regional Commercial Energy Consumption: A Prototype

Table 6-1 provides an example of how data by zip code can be used. The Baltimore Gas & Electric Company serves portions of Prince George's County. Using three zip codes from Prince George's County, a trend for commercial consumption can be gleaned. When this data is compared to construction and employment data for the areas, it provides a basis for establishing a benchmark measuring energy consumption and the effects of overall energy policies.

	TABLE 6-1				
	Samp	ole Commercial D	ata		
	Selected Pri	nce George's Cou	nty Areas		
	kWh by Zip Code				
Zip Code	Jurisdiction	2002	2003	2004	
20707	Laurel	5,927,917	12,663,216	16,848,576	
20724	Laurel	2,524,599	4,316,298	4,438,900	
20772	Upper Marlboro	7,031,482	11,986,109	14,423,327	
	Totals	15,483,998	28,965,623	35,710,803	

<i>Table 6.1:</i>	Sample	Commercial	Data-	Selected	Prince	George's	County Areas
10000 0011	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0011111010101	2	~~~~~~	1	000.00 %	000000000000000000000000000000000000000

Source: Baltimore Gas & Electric Company

Table 6-2 provides additional data by zip code for 2004. There was no data prior to 2004 provided for these zip codes. A suggested follow-up activity with the energy companies should be to select a year and zip codes for an area to establish a basis for trends analysis.

	TABLE	6-2
	Sample Comme	ercial Data
	Selected Prince Georg	e's County Areas
	kWh by Zip	Code
Zip Code	MWCOG Jurisdiction	2004
20715	Bowie	136,200
20769	Glenn Dale	1,558,736
20706	Lanham	582,930
20723	Laurel	400,400
	Totals	2,678,266

Source: Baltimore Gas & Electric

Table 6-3 includes a summary of the commercial data for Maryland jurisdictions provided by PEPCO Energy Services. The data by jurisdiction has been compiled from zip codes associated within each of the jurisdictions. What we see are several anomalies. As shown, there is a wide variability for some of the jurisdictions compared to others. One possible reason for this variability is that, while all the utility companies were cooperative, each had different challenges in sorting data by zip codes and energy units.

Table 6.3: Sample Commercial Data- Maryland Jurisdictions

TABLE 6-3					
Sample	Sample Commercial Data				
	laryland Jurisdictions				
kW	h by Zip Code				
Maryland Jurisdictions	2002	2004			
College Park	7,426,955	71,762,895			
Gaithersburg	36,734,450	69,450,446			
Greenbelt	52,467,566	14,488,002			
Montgomery County	275,027,474	364,733,262			
Prince George's County	185,432,940	110,276,973			
Rockville	59,136,403	85,646,393			
Takoma Park	8,879,134	3,935,103			
Totals	640,588,920	758,682,143			

Source: PEPCO Energy Services

Regional Government Energy Consumption: A Prototype

Several of the energy companies that service the MWCOG jurisdictions provided data based on their payments to local government. Like the data on commercial users, the data illustrates the potential for developing a regional energy information system. Such a system would provide the context for interpreting the data. For example, this includes major expansions in government capital spending, growth in public sector employment, and shifts in policies regarding the location of government services.

Energy Provider Sources of Data

Old Dominion provides electricity service to the Virginia jurisdictions in the MWCOG Region. Old Dominion has a government sales rate and hence could provide certain information by zip code (See Table 6-4). A number of factors can affect the year-to-year changes in energy consumption. However, as with commercial data, it is possible to coordinate with utility companies thus helping to establish the benchmark and trend factors.

1	<u>ectea virginia Jurisaictio</u> 6-4	
-		
Jurisdictions	2001	2002
Fairfax	578,016	1,017,408
Fairfax	351,936	1,006,848
Falls Church	626,400	1,351,44(
Herndon	254,400	936,400
Leesburg	504,000	1,320,000
Lorton	509,600	1,265,600
Springfield	377,088	967,680
Alexandria	342,000	565,200
Alexandria	969,120	2,185,200
Alexandria	828,000	1,188,000
Alexandria	685,800	760,200
Totals 6,026,360 12,563,97		
	Sample Govern Selected Virginia kWh by Zi Jurisdictions Fairfax Fairfax Falls Church Herndon Leesburg Lorton Springfield Alexandria Alexandria	Fairfax 578,016 Fairfax 351,936 Fails Church 626,400 Herndon 254,400 Leesburg 504,000 Lorton 509,600 Springfield 377,088 Alexandria 969,120 Alexandria 828,000 Alexandria 685,800

Table 6.4: Sample Government Data- Selected Virginia Jurisdictions

Source: Old Dominion

Table 6-5 and 6-6 contain samples of government data provided by PEPCO Energy Services and Baltimore Gas & Electric Company. Because of the variability in this data, it is divided between Montgomery County (Table 6-5) and Prince George's County (Table 6-6).

Table 6.5: Sample Government Data- Selected Maryland Jurisdictions (Montgomery County)

TABLE 6-5				
S	ample Government I	Data		
Sele	cted Maryland Jurisd	lictions		
	kWh by Zip Code			
Jurisdiction 2002 2003 2004				
Montgomery County	106,449,810	174,367,289	204,019,095	
Rockville 6,846,932 8,960,602 13,123,305				
			•	

Source: Energy Information Agency

Table 6.6: Sample Government Data- Selected Maryland Jurisdictions (Prince George's County)

		TABLE 6-6		
	Sampl	e Government Data		
	Selected]	Maryland Jurisdictio	ns	
	kV	Vh by Zip Code		
Zip Code	Jurisdiction	2002	2003	2004
20715	Bowie	10,284,815	19,659,183	20,682,812
20720	Bowie	9,825,508	15,887,256	17,903,119
20707	Laurel	13,945,050	25,307,100	14,727,700
20708	Laurel	3,957,800	8,257,200	4,111,800
20723	Laurel	2,307,000	966,200	2,535,500
20724	Laurel	121,700	152,300	1,205,700
Totals		40,441,873	70,229,239	61,166,631
	Bowie	20,110,323	35,546,439	38,585,931
	Laurel	20,331,550	34,682,800	22,580,700
Totals 40,441,873 70,229,239 61,166,6			61,166,631	

Source: Baltimore Gas & Electric Company

Government Sources of Data

Based on responses to a survey, the jurisdictions that comprise MWCOG do not have a system in place to collect energy consumption and expenditure data on their operations. Data is spread over a number of agencies due to programmatic and budget reasons. For

example in the case of the District of Columbia, energy bills are paid by both the executive agencies and various independent agencies. Noteworthy, other jurisdictions with different collecting protocols like Montgomery County are able to collect data for a particular fuel type.

City of Bowie

Based on responses to a survey data sheet for the years 2001-2004, the Bowie municipal government spent an annual average, of \$195,197; \$77,680; \$63,589; \$223,197; \$207,338; and \$8,906 on street lighting, park lighting, wastewater treatment, electricity, water authorities, and miscellaneous items respectively.

For the years 2001-2004, the City of Bowie consumed average annual kilowatts of 2,628,485; 331,947; 2,529,743; 2,991,936; 2,546,127; and 108,965 on street lighting, park lighting, wastewater treatment, electricity, water authorities, and miscellaneous items respectively.

TABLE 6-7				
City of Bowie				
	Average 2001-2004			
	Expenditures	Consumption/kw		
Street Lighting	\$195,197	2,628,485		
Park Lighting	\$77,680	331,947		
Wastewater Treatment	\$63,589	2,529,743		
Electricity	\$223,197	2,991,936		
Water Authorities	\$207,338	2,546,127		
Miscellaneous	\$8,906	108,965		
Total	\$775,907	11,137,203		

Table	67.	City o	f Bowie
ruoic	0.7.	City 0	DOWIC

Source: City of Bowie

In 2004 the City of Bowie had roughly 28 buildings totaling an average square footage of 162,405 for the buildings.

Prince William County

The government of Prince William County was unable to provide consumption and expenditure data. However, the County Government indicated that it had approximately 121 buildings in 2004, representing roughly 1,076,955 in square footage. This number of square feet of office space could provide opportunities for measuring energy savings.

City of College Park

The City of College Park (CCP) spent \$155,896; \$20,375; \$42,919; and \$61,716 on street lighting, natural gas, electricity, and vehicle fuel during the years 2000-2004. CCP consumed an annual average of 20,642 therms of natural gas, 1,489,093 kilowatts of electricity and 47,162 gallons of vehicle fuel during that same period. In 2004, the City of College Park had roughly 15 buildings totaling an average square footage of 73,230.

Loudoun County

Loudoun spent an average of \$145,628 and \$1,170,468 annually for natural gas and electricity during the years 2000-2004. Equally, it consumed \$155,925 and \$1,167,114 in both natural gas and electricity for the same period.

The county's number of buildings for the years 1990 – 2004 is 187; 208; 210; 212; 195 and 197 representing an average square footage of 942,717; 1,046,415; 1,332,447; 1,338,589; 1,239,005, and 1, 238,165. During the six years of data collected, the average number of buildings was 202, with an average square footage of 1,189,556 per building.

Loudoun County also provided data on its public schools for the years 1990-2004. The county's public schools grew from 41 in 1990 to 72 in 2004 or 75.6 percent. The growth in public schools increased consumption by 159.1 percent and expenditures by 147 percent during the period.

Montgomery County

Montgomery County provided information on total fuel consumed by both county and jurisdiction. The types of fuels consumed included (i) compressed natural gas CNG Fast Fill (ii) CNG Slow Fill, (iii) diesel, (iv) ethanol, and unleaded motor gasoline. Diesel fuel was the most used fuel type for Montgomery County. Below is a breakdown on the total quantities and amounts of fuel consumed annually.

Table 6.8: Montgomery County

Year	TABLE 6-8 Total Quality	Total Cost
2000	4,484,821.20	\$5,696,843.46
2001	17,239.30	\$31,453.88
2002	4,815,018.40	\$4,760,046.74
2003	1,739,649.89	\$2,135,427.60
2004	5,468,610.05	\$194,400.98
	~	

Source: Montgomery County

City of Gaithersburg

This jurisdiction reported participation within an aggregation initiative. Although Gaithersburg reported having information related to the request, no specific or detailed data was provided. In 2004 the City of Gaithersburg had roughly 17 buildings totaling an average square footage of 391,091.

Arlington County

According to its website, the Arlington County Government's total annual energy bill is about \$7 million. Most of that expense is electricity, used to provide air conditioning, lighting, computers, printers, fans, vending machines, refrigerators, and other building appliances. Several county buildings are also heated with electricity. In addition, the County has over 10,000 streetlights with 240 intersections that have traffic signals. The water pollution control plant on S. Glebe Road uses a great deal of energy to clean wastewater. Natural gas is used in many buildings for space heating and water heating, and the County operates over 800 vehicles, including a car pool fleet, public safety vehicles and heavy equipment. County information can be obtained at http://www.arlingtonva.us/departments/EnvironmentalServices/epo/EnvironmentalServic esEpoEnergyEfficiency.aspx.

Regional Household Energy Consumption: A Prototype

The utility companies provided the most complete set of data by zip code for the residential sector. As with the commercial and the residential data, there is wide variability in the data and the data requires further analysis. Similarly with commercial and government data from utility companies, this data suggests the potential for developing a regional energy data system.

For the residential sector, energy consumption may be seen in relationship to the increase or decrease in the number of households in the MWCOG jurisdictions over the past decade. While there has been a 16 percent growth in households for MWCOG overall from 1990-2000, six jurisdictions grew greater than 25 percent. The District of Columbia experienced slight erosion in households over the same period and two jurisdictions, Takoma Park and Greenbelt, remained the same.

Appendix 6.A summarizes the information provided by Washington Gas. The overall MWCOG picture for residential natural gas consumption is that of a declining trend over the past several years. A few qualifying comments are necessary. First, the significant drop in 2003 for the District of Columbia and Falls Church are believed to be an aberration in the data provided. Washington Gas is investigating, but there is no explanation available at the time of this report. Second, the numbers reflect only direct services from Washington Gas and not those of any third party suppliers (Washington Gas sales to third party suppliers are included in Appendix 6.B). Third, the numbers in

Appendix 6.A should not be viewed in isolation but correlated with other data (e.g., growth in households, variations in natural gas prices, the price of alternate energy sources, weather, economic activity and similar factors).

Washington Gas could not provide an average annual price, but the EIA prices reflected in Table 6-9 below for 1990 and 2000-2004 show the average price paid by residents in the respective MWCOG jurisdictions. Except for 2000, Marylanders paid less for natural gas than residents of the District of Columbia and/or Virginia and gas prices doubled in all three regions between 1990 and 2000. The drop in 2002 is likely attributable to the deregulation of natural gas prices in Maryland.

		TA	BLE 6-9			
	Average	Price for Natu	ral Gas in Res	sidential Secto	r	
	(Dollars Per T	housand Cubi	c Feet)		
Area	1990	2000	2001	2002	2003	2004
District of Columbia	7.18	11.40	12.27	11.54	14.66	15.76
Maryland	6.92	11.66	12.42	11.04	12.49	14.38
Virginia	7.31	10.91	13.27	11.65	14.29	15.34

Source: Energy Information Agency

None of the utility firms supplying electricity consumption data (Dominion Virginia Power, PEPCO Energy Services and Allegheny Power) could provide consumption information for 1990. As reflected in Appendix 6.C, the data supplied primarily covers 2002 through 2004. Therefore, baselining residential electricity usage to 1990 could not be done for this report and the companies felt that it would be difficult to pull the 1990 data, even for a fee.

Generally speaking, there appears to be a rise in the use of electricity. This information needs to be viewed in the context of price, more energy-efficient houses and appliances, growth in households and similar factors. That said, three jurisdictions - Manassas, Frederick County and Montgomery County - all with double-digit household growth reflect an increase in consumption for the past five years. Further, the data for Frederick County, when put in the context of usage correlated to the number of households, suggest that consumption data for the other jurisdictions may be incomplete. An error may exist because the information provided includes apartments and these may also be covered in the Commercial Sector. For instance, Frederick County, with one-fifth the households of Montgomery County, is reported as consuming over 100+ percent more electricity.

Allegheny Power and Dominion Virginia Power provided average price information and the prices from Dominion Virginia Power only covered years 2002-2004. PEPCO Energy Services could not provide average prices. With the incompleteness of the electricity price information by companies and jurisdictions, a better sense of price trends can be gleaned from the EIA price information by state and the District of Columbia that is summarized in Table 6-10. From 1990 to 2000, price for electricity increased much less than the price for natural gas. Prices in the District of Columbia increased the most between the three regions; an increase of 33 percent. Virginia and Maryland experienced price increases of 10.2 percent and 10.8 percent respectively over the same ten-year period. One possible explanation for the relatively stable electricity prices is the capping of rates that occurred during the utility restructuring. The caps are now off for the District of Columbia and for commercial users in Maryland (caps for residential use will fall on July 1, 2006). Electricity prices were provided for three jurisdictions over 2000-2004 and when taken as an average, the prices in these MWCOG jurisdictions were lower relative to the EIA price for each state and the District of Columbia for all years compared except 2003.

TABLE 6-10 Average Price for Electricity in Residential Sector (Cents Per Kilowatt Hour)						
Area	1990	2000	2001	2002	2003	2004
District of Columbia	6.10	8.03	7.83	7.82	7.66	8.14
Maryland	7.22	7.95	7.70	7.71	7.73	8.00
Virginia	7.25	7.52	7.80	7.79	7.76	7.99
Selected MWCOG jurisdictions	Not	6.82	7.01	7.00	8.09	7.20
(Montgomery, Frederick and Manassas)	Available					

<i>Table 6.10:</i>	Average Pric	e for Natural Ga	s in Residential Sector
10010 0.10.	men age i ne	e joi 1 (alli al oa	

Sources: EIA, Dominion Virginia Power and PEPCO Energy Services

Disaggregated data for the other energy sources (distillate fuel, kerosene, liquefied petroleum gas, wood, geothermal and solar) were not available and would be difficult and costly to obtain. However, by looking at information from the US Census Bureau for 1990 and 2000 (Charts 1 through 4), shifts can be seen in energy sources by region and the MWCOG jurisdictions overall. Natural gas is the dominant home heating fuel for households in Maryland, the District of Columbia and the collective MWCOG jurisdictions. However, electricity is the dominant house heating source for the Virginia jurisdictions.

Specifically, charts 1 through 3 show the types of home heating fuel for Maryland, Virginia and the District of Columbia. Overall the charts demonstrate an overall decline in fuel oil/kerosene for the states, and the District of Columbia. Although too few to register on the chart, there are 29 solar projects underway in the Maryland MWCOG territories; three are in Rockville, four in Prince George's County, twenty in Montgomery County and two in Frederick County.

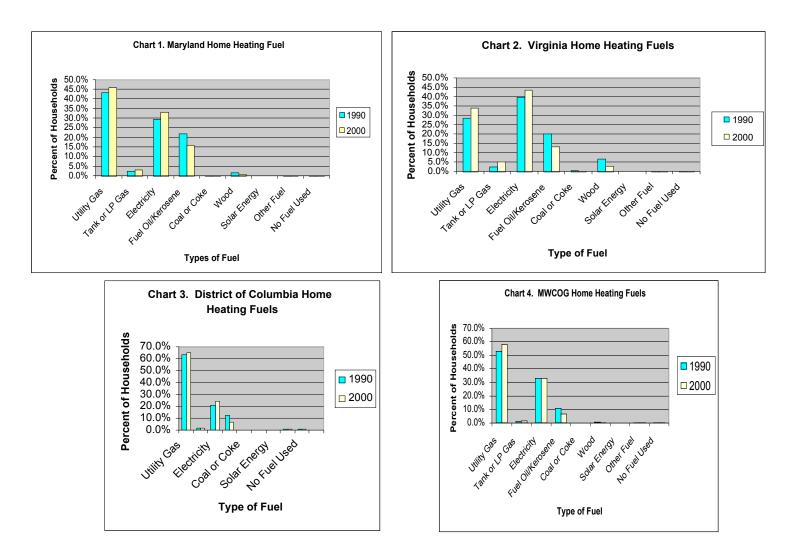
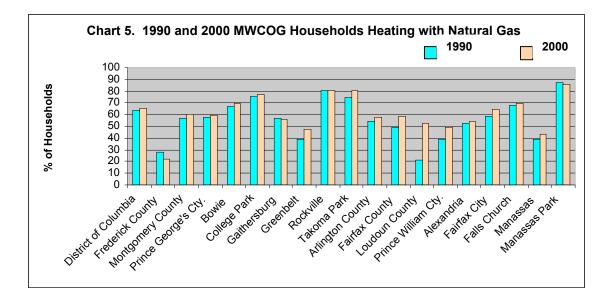
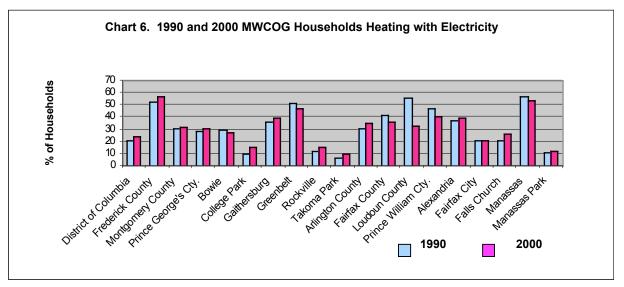




Chart 5 demonstrates the percent of households using natural gas or heating oil in 1990 and 2000 for each MWCOG jurisdiction. Loudoun County is the only jurisdiction with a significant change over the 10-year period, going from 20.9 percent to 52.9 percent of households heating with natural gas. Other counties at or approximating a 10 percent increase in household heating with natural gas are Greenbelt, Fairfax County and Prince William County. Frederick County is the only jurisdiction that experienced a decrease (from 27.3 percent to 21.7 percent) in the percentage of households heating with natural gas.

The percentage of households using electricity for home heating in 1990 and 2000 are

shown in Chart 6. Five jurisdictions (Bowie, Greenbelt, Fairfax County, Loudoun

County and Prince William County) experienced a decrease in the use of electricity as a house heating fuel. The largest decrease occurred in Loudoun County (from 55.5 percent to 33 percent).

The EIA "end-use" for the energy consumed per household could not be disaggregated. The information was available by region and all the MWCOG jurisdictions are in the Southern Region. Table 6-11 summarizes per household end-use for electricity and natural gas. Appliances are the dominant end-user for electricity and space heating is the dominant use for natural gas.

TABLE 6-11 End Uses of Electricity and Gas per Household				
END USE	ELECTRICITY	NATURAL GAS		
	(14,240 kWh used per	(59 thousand cubic feet per		
	household)	household)		
Space Heating	2,589	59		
Air-Conditioning	3,336	41		
Water Heating	2,645	20		
Appliances	7,978	9		

Table 6.11: End Uses of Electricity and Gas per Household

Source: EI A Residential Energy Consumption and Expenditure Survey 2001

In addition to the end-use for natural gas and electricity, EIA maintains information on the per capita expenditure by state and the District of Columbia, but this information cannot be disaggregated. As shown in Table 6-12, the average annual per capita expenditure for natural gas over the 21-year period from 1980 to 2001 decreased for Maryland and Virginia and increased slightly for the District of Columbia.

Table 6.12: Per Capita Expenditure for Natural Gas (By State)

TABLE 6-12Per Capita Expenditure for Natural Gas, 1980 to 2001

Region	1990	2000	Average Annual
			Increase (Decrease)
Maryland	17 million	15 million Btu	-0.50%
	Btu		
Virginia	10 million	10 million	-0.10%
	Btu	Btu*	
District of	21 million	23 million Btu	-0.40%
Columbia	Btu		
Source: Energ	y Information Ag	gency	
*slight decrea	se but less than a	ı million Btu	

As shown in Table 6-13, the annual average per capita expenditure for electricity from 1990 to 2001 increased for all three regions with the District of Columbia having the highest increase although the population decreased over that same period.

Table 6.13: Per Capita Expenditure for Electricity, 1990 to 2001

TABLE 6-13 Per Capita Expenditure for Electricity 1990 to 2000

			Average Annual Increase
Region	1990	2000	(Decrease)
Maryland	2,874 kWh	4,468 kWh	2.1%
Virginia	3,690 kWh	5,183 kWh	1.6%
District of Columbi	1,700 kWh	2,932 kWh	2.6%
Source: Energy Information	Aganer		

Source: Energy Information Agency

Natural Gas & Electricity/Consumption/Price by Jurisdiction

MWCOG Jurisdiction-specific consumption, price and house heating fuel information gathered from the utility companies and the U. S. Census for the Residential Sector is summarized in Appendix 6.D. The information covered includes the following:

- Natural Gas Consumption in Therms (1990, 2000-2004)
- Electricity Consumption in Kilowatt Hours (2002-2004 for most jurisdictions)
- Average Price for Natural Gas in Dollars Per Thousand Cubic Feet (1990, 2000-2004)
- Average Price for Electricity in Cents Per Kilowatt Hour (2002-2004 for most jurisdictions)
- House Heating Fuel Use by Percent of Households (1990 and 2000)
- Number of Households (1990 and 2000)

For those instances where the utility company did not provide an average price for natural gas or electricity, the price for that state was used. Any aberrations in the information presented are also noted.

6.2 THE GASOLINE ESTIMATOR

There is limited information that provides data and analysis around gasoline consumption within the region. Thus, a gasoline estimator was developed by Jerome S. Paige & Associates to better understand gasoline consumption and the impacts of gasoline spending within the Region.

The Gasoline Estimator was derived from 1990 MWCOG air quality surveys used to develop the conformity analyses for the 2003-2008 Transportation Improvement Program/Constrained Long Range Plan (TIP/CLRP). This information was used to fill the information void in regional gasoline consumption and expenditures. Local data is necessary because EIA data does not provide any meaningful way to estimate local vehicle miles traveled (VMT).

The first step in building the Estimator was to determine the ratio of VMT for each MWCOG jurisdiction. One of the major VMT surveys in the TIP/CLRP covered these jurisdictions and hence provided usable estimates from which relative VMT could be derived. The second step was to apply these ratios against another set of data in the TIP/CLRP that estimated VMT for the entire region over the period covered in this Energy Plan. With this data in hand, the third step applied American Automobile Association gallons/mile estimates against the derived VMT in order to suggest the potential reduction in gasoline consumption afforded by various levels of gallons/per mile efficiency.

It should be noted that the MWCOG surveys were taken at different times and subsequent derivations appear to be based on many factors including traffic growth estimates. Much of the hard data is old and hence this Estimator must be viewed only as a tool for illustrating potential efficiencies. Certainly, air quality analyses provide more accurate estimates of local driving habits than national-level data; but the entire analysis would benefit from updated survey results.

To provide some indicators of the effects of improved automobile fuel efficiency on regional gasoline consumption, based on the model, we compare gasoline consumption in the years 1994, 2002, 2005, and 2015 under three scenarios which are, 14 mpg (Table 6-13), 20 mpg (Table 6-14), and 30 mpg (Table 6-15). For example, increasing miles per gallon to 20 mpg by the year 2015 from 14 mpg in the base year 1994, gasoline consumption in the region would be reduced to 9.8 million gallons -- from 14.0 million gallons, or by 4.2 million gallons (30 percent). See tables 6.13 through 6.15.

		1.4		
TABLE 6-14 Local Gasoline Consumption Estimator (Detailed by Jurisdiction)				
Local Gasoline Col	14 mpg scer		by Julisaletion	1)
	1994	2002	2005	2015
Jurisdictions	Gasoline Gal	llons Consum	ed by Year/Ju	risdiction
Montgomery Co	79,750	96,207	102,498	122,426
Prince George's Co	540,238	651,723	694,336	829,336
Frederick Co	196,311	236,822	252,307	301,363
Charles Co	77,764	93,812	99,945	119,378
Calvert Co	44,265	53,399	56,891	67,952
Maryland Totals	938,326	1,131,963	1,205,977	1,440,455
Arlington	927,414	1,118,799	1,191,952	1,423,703
Alexandria	518,910	625,994	666,925	796,595
Fairfax	1,208,501	1,457,892	1,553,216	1,855,208
Loudoun Co	1,277,717	1,541,392	1,642,176	1,961,464
Prince William Co	1,816,949	2,191,902	2,335,219	2,789,256
Stafford Co	87,398	105,434	112,327	134,167
Virginia Total	5,836,890	7,041,414	7,501,815	8,960,394
District of Columbia	2,351,827	2,837,160	3,022,667	3,610,364
Total	9,127,044	11,010,537	11,730,459	14,011,212

Table 6.14: Local Consumption Estimator @ 14m.p.g: A Prototype

	TABLE 6-15			
Local Gasoline Consumption Estimator (Detailed by Jurisdiction)				
	20 mpg scenario			
	1994	2002	2005	2015
Jurisdictions	Gasoline Gal	lons Consum	ned by Year/.	Jurisdiction
Montgomery Co	55,825	67,345	71,748	85,698
Prince George's Co	378,166	456,206	486,035	580,535
Frederick Co	137,418	165,776	176,615	210,954
Charles Co	54,435	65,668	69,962	83,565
Calvert Co	30,985	37,379	39,823	47,566
Maryland Totals	656,829	792,374	844,184	1,008,318
Arlington	649,190	783,159	834,366	996,592
Alexandria	363,237	438,196	466,847	557,617
Fairfax	845,951	1,020,525	1,087,251	1,298,646
Loudoun Co	894,402	1,078,975	1,149,523	1,373,025
Prince William Co	1,271,864	1,534,331	1,634,654	1,952,479
Stafford Co	61,178	73,803	78,629	93,917
Virginia Total	4,085,823	4,928,990	5,251,271	6,272,276
MD and VA				
District of Columbia	1,646,279	1,986,012	2,115,867	2,527,255
Total	6,388,930	7,707,376	8,211,321	9,807,849

Table 6.15: Local Consumption Estimator @ 20 m.p.g: A Prototype

TABLE 6-16 Local Gasoline Consumption Estimator (Detailed by Jurisdiction)				
	30 mpg scenario			
	1994	2002	2005	2015
Jurisdictions	Gasoline Gal	llons Consun	ned by Year/.	Jurisdiction
Montgomery Co	37,217	44,897	47,832	57,132
Prince George's Co	252,111	304,137	324,023	387,023
Frederick Co	91,612	110,517	117,743	140,636
Charles Co	36,290	43,779	46,641	55,710
Calvert Co	20,657	24,920	26,549	31,711
Maryland Totals	437,886	528,250	562,789	672,212
Arlington	432,793	522,106	556,244	664,395
Alexandria	242,158	292,131	311,232	371,744
Fairfax	563,967	680,350	724,834	865,764
Loudoun Co	596,268	719,316	766,349	915,350
Prince William Co	847,910	1,022,888	1,089,769	1,301,653
Stafford Co	40,786	49,202	52,419	62,611
Virginia Total	2,723,882	3,285,993	3,500,847	4,181,517
District of Columbia	141,858	151,133	180,518	
Total	2 202 (2)	2.065.276	4 2 4 4 1 5 4	4 952 720
	3,303,626	3,965,376	4,244,154	4,853,729

Table 6.16: Local Consumption Estimator (a) 30 m.p.g: A Prototype

Montgomery County, MD provides one example of the effect of the rising fuel prices. From the period 2002-2005, Montgomery County increased its fuel consumption by 14 percent; however its fuel expenditures increased by 74 percent. See Appendix 6.E.

6.3 A MWCOG ENERGY INTELLIGENCE SYSTEM

Outlined below is a proposal for an energy intelligence system. As indicated in previous sections, no framework exists to provide a complete picture of the energy consumption, price, and expenditure data for the region. Consequently, the region is limited in its ability to understand and guide the region's transition to a new energy era.

Context

Given the:

- 1. rapid escalation of global crude oil prices to current levels over \$60 per barrel, and, under a worst case scenario, consider the possibility of an escalation to nearly \$100 per barrel;
- 2. persistent demand for petroleum and only somewhat moderate increases in natural gas and electricity demand attenuated only by appliance, building and transportation efficiency technology;
- 3. the new federal energy bill and its uncertain effects on energy demand and supply; and
- 4. the continuing threat of terrorism, particularly in the Washington Metropolitan Area, and the vulnerability of the energy and utility infrastructure serving the Metro Area,

Ultimately, the MWCOG needs to construct, manage and cultivate a Metropolitan Energy Intelligence System (EIS).

Concept

The EIS is a cost-effective resource available to the public, corporate, community-level and utility sectors that would provide:

1. *Jurisdiction level data* on energy consumption and expenditure patterns, by fuel type, in the residential, industrial, and commercial sectors, so that policymakers and utilities serving those jurisdictions <u>plan</u> more effectively for energy-related contingencies (such as supply interruptions, terrorist disruption of transmission and distribution lines, transformers, storage depots and other contingencies with alternative short-term supply alternatives).

- 2. *Metropolitan-wide data* provided on the patterns of energy consumption and expenditure data by fuel type. These data, configured and maintained in an EIS database by the MWCOG (including appropriate Geographic Information Systems data and satellite-generated data on energy infrastructure), are used to generate regional energy intelligence, to create planning scenarios and to promote short and longer-term federal, state and regional energy policy and planning.
- 3. **Data to suppliers of energy,** that includes utilities, fuel oil companies, alternative and renewable energy companies at the micro level (census-track, zip code) residential; institutional level: commercial, public sector and industrial levels. They also should address the macro: multi-jurisdictional, Washington metropolitan aggregate levels. It is evident from the research of Jerome S. Paige and Associates that most suppliers do not keep data at the jurisdictional level. Sector (customer) definitions differ by supplier; thus providing the data is easier for some rather than others. Further, few suppliers keep consumption information that can readily be assessed for more than three to five years. Cultivation of this type of data enables suppliers to generate intelligence about patterns of demand and price as well as impacts at levels not now available. These data also <u>allow</u> policy and planning discussions to occur between suppliers, federal, state and local policymakers using a common database and intelligence system.

Consequence

The three interrelated objectives an EIS allows include:

- 1. Energy Efficiency At Both Jurisdictional And Metro Levels
- 2. Emergency Energy Planning And Policy (Metro Energy Security)
- 3. Energy Supply Planning And Contingency

The EIS will enable the MWCOG to work with member jurisdictions to consider reinstituting shared fuel purchasing, residential energy demand messages, public sector transportation fleet, building and technology energy budgeting and commercial sector, particularly developers and the construction industry, to meet metro cultivated efficiency objectives.

Jurisdiction Level	Data on energy consumption and expenditure patterns, by fuel			
Data	type, in the residential, industrial, and commercial sectors			
Duiu	type, in the residential, industrial, and commercial sectors			
	To assist policymakers and utilities to <u>plan</u> more effectively for			
	energy-related contingencies such as:			
	energy related contingencies such as.			
	• Supply interruptions,			
	 Supply interruptions, Terrorist disruption of transmission and distribution lines, 			
	transformers, storage depots, and			
	 Other contingencies with alternative short-term supply 			
	alternatives.			
Metropolitan-wide	Data on patterns of energy consumption and expenditure, by fuel			
Data	type.			
	This data, configured and maintained in an EIS database by the			
	MWCOG, including appropriate Geographic Information			
	Systems data and satellite-generated data on energy			
	infrastructure, can be used to:			
	 Generate regional energy intelligence, 			
	 Create planning scenarios, 			
	• Promote short and longer-term federal, state and regional			
	energy policy and planning.			
Data to Suppliers of	Data on utilities, fuel oil companies, alternative and renewable			
Energy	energy companies at the:			
	 Micro level (census-track, zip code) residential, 			
	institutional, commercial, public sector and industrial			
	levels,			
	 Macro-level: multi-jurisdictional, Washington 			
	metropolitan aggregate levels.			

Compiled By: Jerome S. Paige & Associates

Summary

While the EIA data cannot be disaggregated to the regional level, this section of the Regional Energy Plan provides a framework for exploring ways to develop regional energy data for policy and planning activities and to measure the energy performance of the region. Such a framework would also assist the Region with its energy security planning as well.

7. ENERGY EFFICIENCY & CONSERVATION: BEST MANAGEMENT PRACTICES

This section of the Regional Energy Plan outlines energy best management practices. Regional energy goals can be met by developing policies and adopting best practices that significantly increase the energy efficiency of appliances, vehicles, and buildings; by diversifying the region's energy sources to include greater use of "green energy" and renewables; and by raising awareness of energy users so that they can make wise energy choices by creating a "culture of conservation".

	Chapter Outline
Regional I	Energy Plan Policy Framework (TABLE 7-1 and 7-2)
• En	nergy Efficiency & Conservation: Demand Side
• En	nergy Efficiency & Conservation: Supply Side
Appliance	s: Best Management Practices (TABLE 7-3)
	est Management Practices in Promoting Energy Efficient Appliances
	fects of Energy Efficient Appliances
	enefits of Appliance Standards
• Fe	ederal Standards
• Sta	ate Standards
	ax Credits & Holidays
	Best Management Practices (TABLE 7-4)
	est Management Practices in Promoting Energy Efficiency Vehicles
	otor Fuel & Expenditures in the Tri-State Area
	ileage & Emissions Standards: California
	ax & Other Incentives
	ehicle Replacement
-	eturn on Investment
	Best Management Practices (TABLE 7-5)
	on-Residential Sector: Building Best Management Practices
	nancial Benefits of Green Buildings
	overnment: Building Best Management Practices
	esidential Sector: Building Best Management Practices
	ffordable Housing: Building Best Management Practices
00	ehavior: Best Management Practices (TABLE 7-6)
	omoting Wise Energy Choices
	nergy Taxes
0.	ources: Best Management Practices (TABLE 7-7)
	ind Energy
	o-Generation
• So	lar Energy

		TABLE 7-1	
		Y PLAN POLICY FRAME	
	Areas	& Conservation: Demand Sid Importance in Energy Savings	e Best Management Practices
Vehicles	Fuel Efficiency Standards	Motor fuel comprises 61 percent of the petroleum consumed in the District; 54 percent of the petroleum consumed in Maryland; and 52 percent of the petroleum consumed in Virginia.	Fuel efficiency standards that meet or exceed the federal standards
Appliances			
	Appliance Efficiency Standards	The two biggest contributors to global warming are power plants and automobiles. Electricity comprises 61 percent of the energy needs of the District; 11 percent of Maryland, and 14 percent of Virginia. For the Tri-State Region, almost 26 percent of the region's energy comes from electricity.	Appliance Efficiency Standards that meet or exceed the federal standards
Buildings			
	Building Efficiency	In the United States, buildings account for major sources of total energy use, electricity consumption, greenhouse gas emissions, raw materials use, waste output, and potable water consumption.	Increase number of Green Buildings, in general, and the number of Leadership in Energy and Environmental Design (LEED) Certified Building, particular.
Behavior			
	Prices as a Conservation Incentive	There is an energy price level where consumers will begin to reduce their demand. Policymakers can increase the rate at which consumers reduce their energy demand by using taxes to raise prices.	Proposals and recommendations to use tax policy to maintain energy prices at levels that encourage a reduction in demand.
	Informed Energy Choices	Energy conservation leads to significant reductions in energy consumption.	Energy Education Programs that encourage consumers to make wise energy choices.

TABLE 7-2 Energy Efficiency & Conservation: Supply Side				
1 80		Best Management Practices		
Electricity	Renewable Energy	The purchase of wind energy by governments helps stimulate the generation of wind energy, conserves on non-renewable resources, and improves air quality.	Long-term contracts by governments to purchase wind energy.	

TABLE 7-3
Appliances: Best Management Practices
Energy Efficient Appliances

Best Management Practices in Promoting Energy Efficient Appliances:

- 1. Set regional energy efficiency standards for appliances at or above federal standards
- 2. Advocate for increased appliance energy efficiency standards
- 3. Promote "Energy Star" appliances
- 4. Provide incentives to purchase energy efficient appliances

Effect of Energy Efficient Appliances: Energy Savings, Cost Savings, Power Plant Construction Avoidance:

The biggest contributors to global warming are power plants and automobiles. Electricity comprises 61 percent of the energy needs of the District; 11 percent of Maryland, and 14 percent of Virginia. For the Tri-State Region, almost 26 percent of the region's energy comes from electricity. ENERGY STAR qualified appliances incorporate advanced technologies that use 10-50 percent less energy and water than standard models. The money saved on utility bills can more than make up for the cost of a more expensive but more efficient ENERGY STAR model.

Benefits of Appliance Standards: Save Money, Protect Environment. Boost the Economy

When the federal or state governments establish appliance and equipment standards, they are setting the bar for minimum energy efficiency of products. This can be done either at the manufacturing, sale, or installation stage. Standards save money for energy users, protect the environment, and boost the economy. They hasten adoption of energy-saving technology in products, often with improved performance. Greater energy efficiency means building fewer new power plants, improving air quality, and retaining more available consumer income that can be spent on other goods and services or saved.

http://www.standardsasap.org/aboutstnds.htm

Increased	New standards for furnaces and boilers alone could save about 3 percent of
Efficiency	the oil and 6 percent of the natural gas used to heat American homes. The
Standards:	electricity savings could equal the output of 40 power plants, and the value to
Federal	consumers could amount to about \$6,000 per household by 2020.
	Appliances and Commercial Equipment Standards
	http://www.eere.energy.gov/buildings/appliance_standards/
	Final Rules: New standards released for 11 appliances on October 18, 2005 can be found at: <u>http://www.eere.energy.gov/buildings/appliance_standards/notices_rules.html</u>

TABLE 7-3				
Appliances: Best Management Practices				
Increased Efficiency Standards: States	Interficient Appliances Energy Efficient Appliances A coalition of 15 states and the City of New York sued the federal Department of Energy for violating Congressionally-enacted mandates to adopt stronger energy-saving standards for 22 common appliances that use large amounts of electricity, natural gas and oil. The mandates were to be met by clearly specified deadlines. The standards, according to the federal governments own numbers, would generate substantial savings for consumers and reduce air pollution and global warming emissions from power plants. http://www.oag.state.ny.us/press/2005/sep/sep07a_05.html 1. New York 9. New Jersey 2. California 10. New Mexico 3. California Energy 11. North Carolina Commission 12. Pennsylvania Dept. of 4. Connecticut Environmental Protection 5. Iowa 13. Rhode Island Attorney 6. Maine 14. Vermont Attorney 7. Massachusetts 15. Wisconsin			
	8. New Hampshire	16. The City of New York		
Tax Credits and Tax Holidays (State)	At least 16 states have tax incentive pro http://www.ase.org/content/article/deta 1. Arizona 2. California 3. Connecticut 4. Georgia 5. Hawaii 6. Idaho 7. Maryland			
Tax Credits (Federal)	its Energy Policy Act 2005 www.energy.gov The Tax Incentives Assistance Project (TIAP), sponsored by a coalition of public interest nonprofit groups, government agencies, and other organizations in the energy efficiency field, is designed to give consumers and businesses information they need to make use of federal income tax incentives for energy efficient products and technologies passed Congress as part of the Energy Policy Act of 2005 http://www.energytaxincentives.org/			

TABLE 7-4 Vehicles: Best Management Practices									
Energy Efficient Vehicles Best Management Practices									
Best Management Practices in Promoting Energy Efficient Vehicles:									
	ate for increased								
2. Promot	the purchase &	& use of ene	ergy e	efficient	t vehi	icles			
3. Govern	ment purchase of	of energy ef	ficier	nt vehic	eles				
4. Provide	e incentives to p	urchase ene	rgy e	fficient	appl	iances			
Motor Fuel U	se & Expenditu	ires in the [Γri-S	tate Aı	rea				
The Transporta	ation Sector acco	ounts for 15	.3 pe	rcent of	f the	energy	consum	ed in	n the
District; 28.5 p	ercent of the en	ergy in Mar	yland	l; and 2	.9.6 p	percent,	in Virg	inia.	For the
Tri-State regio	n, the Transport	ation Sector	r acco	ounts fo	or 28.	6 perce	nt of the	e ene	ergy
consumed.									
Table 7.4: Vehic	cle Best Managem	nent Practice	s						
	orises 61 percent c								
petroleum consu	med in Maryland								
	District of Colur			Virgi		Tri-Stat		Tri-	State Percent
Residential			3,179		4,325		\$7,813		26.74%
Commercial			2,433		2,963				21.30%
Industrial			1,170		2,025				11.02%
Transportation		\$318 \$4,66			6,977	\$11,958			40.93%
Totals					100.00%				
Tri-State Area Expenditures Petroleum, 2001									
					2001				
		District of	ion Do	onars			Tri-State		Tri-State
		Columbia	Maryland		V 1ro1n19				Percent
Distillate Fuel		\$82.6	5 \$	1,254.8	\$	51,954.5		91.9	22.42%
Jet Fuel		\$0.0		\$97.5				22.4	
LPG		\$0.3		\$157.8				48.6	
Motor Gasoline		\$275.1		3,798.8			\$9,397.3		64.01%
Residual Fuel	\$6.4		ł	\$129.3		\$179.6	-		2.15%
Other	\$16.8		8	\$338.5		\$449.7			5.48%
Totals						8,522.6 \$14,680.5		100.00%	
Distillate Fuel					22.42%				
Jet Fuel					2.88%				
Motor Gasoline		72.17%		65.76%		62.46%		01%	
Residual Fuel	sidual Fuel 1.68%		-	2.24%		2.11%		15%	
Other 4.41%			5.86%		5.28%		48%		
Totals 100.00%				100.00% 100.00% 100.00%			00%	100.00%	

Source: Energy Information Agency

	TABLE 7-4 Continued Vehicles: Best Management Practices			
Mileage &	State of California			
Emissions Standards	Ten states have or are considering adopting the California emission standards:http://www.dec.state.ny.us/website/press/pressrel/2005/2005131.htmlhttp://www.redefiningfederalism.org/SLES/Sol1.asp1. Connecticut2. Maine3. Massachusetts4. New Jersey5. New York6. Oregon7. Pennsylvania8. Road Island9. Vermont10. Washington			
Tax & Other Incentives	A wide variety of federal and state tax incentives exist to reduce the costs of alternative fuel vehicles. In addition, some states provide for relaxed HOV restrictions.			
Vehicle Replacement	Many governmental units, at all levels, are replacing existing vehicles with ones that are more efficient and with alternative fuel vehicles that replace those using diesel fuel. Environmental Protection Agency requires States and the District of Columbia to purchase alternative fuel vehicles. The District has set a goal of a 90 percent replacement rate, which exceeds the Federal standard.			
Rate of Return	For a guide to the rate of return on purchasing higher fuel efficient vehicles, see Appendix7 that illustrate the annual return on investment (ROI), under different assumptions related to price, miles driven and vehicle replacement costs.			

TABLE 7-5				
Buildings: Best Management Practices				
Best Management Practices in Promoting Energy Efficient Buildings:				
1. Insure that building and conservations codes reflect the latest advancements in				
building energy e				
6 61		renovation and new construction		
3. Promote incentive	es for business and h	nouseholds to use the most energy efficient		
		ing or building new.		
		cent of the energy consumed in the District;		
		23.1 percent, in Virginia. For the Tri-State		
		5.9 percent of the energy consumed.		
In the United States, buil				
• 36 percent of tota				
-	tricity consumption enhouse gas emissio			
30 percent of gree30 percent of raw	e	ns,		
 30 percent of was 				
-	able water consumpt	ion		
	-			
California (State)		Schwarzenegger signed Executive Order S- reen Buildings on December 14, 2004. It		
	established the State of California's priority for energy and resource-efficient high performance buildings. The Executive			
	Order sets a goal of reducing energy use in state-owned			
	buildings by 20 percent by 2015 (from a 2003 baseline) and			
	encourages the private commercial sector to set the same goal.			
	http://www.energy.ca.gov/greenbuilding/index.html			
San Jose, CA		w government building over 10,000 square		
	feet have to meet I	LEED standards.		
	Financial Benefits of Green Buildings			
Summary of Findings (per ft2) 20-year Net Present Value				
Energy Savings \$5.8				
Emissions Savings		\$1.20		
Water Savings		\$0.50		
Operations & Maintenance Savings		\$8.50		
Productivity & Health Benefits		\$36.90 to \$55.30		
Sub-Total		\$52.90 to \$71.30		

TABLE 7-5						
	Buildings: Best Ma					
Average Extra Cost of Building Green		(-\$3.00 to -\$5.00)				
Total 20-year Net Benefit		\$50 to \$65				
Sources Capital E Analys						
Source: Capital E Analys		Best Management Practices				
The residential section 27.5 of the energy in	on accounts for 20.3 perc Maryland; and 23.7 perc	cent of the energy consumed in the District; cent, in Virginia. For the Tri-State region, of the energy consumed.				
Austin, Texas	In conjunction with a program sponsored by the city-owned utility company, about one-fifth of all new homes in Austin, Texas are built under green criteria, which include air-conditioners that are at least 20 percent more efficient than those adapted to national standards. This program has been in effect for 12 years. Austin Energy is a community-owned electric utility and a department of the City of Austin. "Our goal is to provide you with world-class customer service." http://www.austinenergy.com/ The Austin Energy Green Building Program is nationally known for expertise in "green" residential and commercial construction. http://www.ci.austin.tx.us/greenbuilder/ Rich, Motoko, "Aiming to Be the Next Big Amenity", NY Times, November 13, 2003.					
Colorado Built Green	The total for 2004 Built Green home registrations statewide is approximately 5,742; 76 percent of which were in the Denver, Colorado metro area. This volume exceeded their goal for 2004 by 13 percent. Based upon total 2004 registrations, over 25,000 homes have been registered as Built Green since the program began. 2004 Built Green home registrations in the 8-county metro area represent a market share of approximately 27 percent. 2004 Built Green home registrations statewide represent a market share in Colorado of approximately 14 percent of all residential permits. The number of registered homes is a testament of the program's success and an indicator of its exponential growth over the past eight years. <u>http://www.builtgreen.org/ http://www.builtgreen.org/about/2004_executive_summary.pdf</u> Rich, Motoko, "Aiming to Be the Next Big Amenity", NY Times, November 13, 2003.					

	TABLE 7-5				
Buildings: Best Management Practices					
National Resources Defense Council: Green Affordable Housing	In 2004, a premier national affordable housing provider and a leading national environmental group launched the Green Communities Initiative, a five-year, \$550 million commitment to build more than 8,500 environmentally friendly affordable homes across the country. The initiative will offer financing, grants and technical assistance to developers to build affordable housing that promotes health, conserves energy and natural resources and provides easy access to jobs, schools and services.				
	The Green Communities Initiative is a partnership of The Enterprise Foundation/Enterprise Social Investment Corporation (ESIC) and the Natural Resources Defense Council (NRDC), along with the American Institute of Architects, the American Planning Association, and top corporate, financial and philanthropic organizations. Over time, the initiative hopes to transform the way Americans think about, locate, design and build affordable homes.				
	Enterprise and Natural Resources Defense Council Launch \$550 Million Initiative For Healthy, Environmentally Friendly Affordable Housing <u>http://www.nrdc.org/media/pressreleases/040928.asp</u>				
	Marks, Alexandria, "Affordable housing goes 'green'" Such homes may cost more to build, but cities are encouraging them for their long-term savings. <u>http://search.csmonitor.com/search_content/1122/p03s03-ussc.html</u>				

Source: Vick, Robert, "A 'WHITE PAPER' Review of GREEN BUILDING", Supply House Times, Oct 2005. (48)(8) Compiled By: Jerome S. Paige & Associates
 Table 7.6 Energy Behavior: Best Management Practices

	TA Energy Behavior: Be	BLE 7-6 est Manag	ement Pr	actices	
Best Manager	nent Practices in Promoting				
	"culture of conservation" thro				and messages.
	nergy taxes to insure they are				
	Expenditures	s by Secto	rs, 2001		
	Milli	on Dollars	3		Γ
				Tri-State	
	District of Columbia	Maryland	Virginia	Total	Tri-State Percen
Residential	\$310	\$3,179	\$4,325	\$7,813	26.74%
Commercial	\$826		\$2,963	\$6,223	21.30%
ndustrial	\$25	\$1,170	\$2,025	\$3,221	11.02%
Fransportation	\$318		\$6,977	\$11,958	40.93%
Fotals	\$1,479	\$11,446	\$16,290	\$29,215	100.00%
Source: Energy Info	ormation Agency				
include applian role in guiding wise choices, d information and	ocuses on encouraging energy aces, vehicles and structures. I choices and thus the argumen leveloping a culture of conser d education programs are an i e consumption in energy.	Likewise s nt for ener vation is i	sponsors gy taxes. mportant	noted that pric However, bey Consequently	es play a major ond making y, public
Awareness of 7	Tax Incentives		http://wv	vw.energytaxii	ncentives.owrg/
Education & Awareness Programs			DC Energy Office Pilot School Education Program		

Energy Taxes as Incentives to Guide Choice: Behavior Best Management Practices

As the price of gasoline began to reach \$3.00 a gallon and beyond, softening in demand was observed. This suggests that consumers are sensitive to sufficiently high energy prices and will adjust their demand when prices reach certain levels.

Explore proposals and recommendations tax policy to maintain energy prices at levels that encourage a reduction in demand.

Table 7-7: Energy Sources: Best Management Practices

	TABLE 7-7					
Energy Sources: Best Management Practices						
Best Management Practices in I	Promoting a Variety of Energy Sources:					
1. Use fuel purchasing agreements	to access "green" energy					
2. Adopt a "Solar Roof" goals for the	he region					
3. Promote the expansion of co-gen	ieration of energy					
Wind Energy: Renewable Energy	Best Management Practices					
District of Columbia	Several jurisdictions in the Tri-State area are purchasing					
Maryland	up to 5 percent of their electricity from wind to provide					
Virginia	power in government buildings. Montgomery County					
	Maryland is a regional leader in purchasing wind energy					
	for government use.					
Co-Generation: Renewable Energ	gy Best Management Practices					
Combined Heat and Power (CHP) -	- A New Perspective on Energy					
	bined Heat and Power Application Center, based in the Center for					
	University of Maryland, the integrated systems for cooling, heating and					
power (CHP) – which also are known as cogeneration, trigeneration, energy recycling, cooling, heating						
	- provide a mixture of energy services to a single facility or to a group					
of buildings. Electricity to such buildings is provided by on-site or near-site power generators using one						
or more of the many options: internal combustion (IC) engines, combustion turbines, microturbines, steam						

(turbines or fuel cells. In CHP systems, heat that otherwise would be wasted is "recycled" and used for cooling, heating, or dehumidifying.

CHP Benefits Include: Reduced energy costs, Improved power reliability, Increased energy efficiency, and Improved environmental quality.

http://www.chpcenterma.org/

According to the Mid-Atlantic CHP, answering yes to any three of the following 11 questions makes a project a good candidate for CHP:

- 1. Do you pay more than \$.06/ kWh on average for electricity (including generation, transmission and distribution)?
- 2. Are you concerned about the impact of current or future energy costs on your business?
- 3. Is your facility located in a deregulated electricity market?
- 4. Are you concerned about power reliability? Is there a substantial financial impact to your business if the power goes out for 1 hour? For 5 minutes?
- 5. Does your facility operate for more than 5000 hours/ year?
- 6. Do you have thermal loads throughout the year (including steam, hot water, chilled water, hot air, etc.)?
- 7. Does your facility have an existing central plant?
- 8. Do you expect to replace, upgrade or retrofit central plant equipment within the next 3-5 years?
- 9. Do you anticipate a facility expansion or new construction project within the next 3-5 years?
- 10. Have you already implemented energy efficiency measures and still have high energy costs?
- 11. Are you interested in reducing your facility's impact on the environment?

District of Columbia	All local jurisdictions have available to them
Maryland	incentives to promote CHP
Virginia	

Solar Energy: Renewable Energy Best Management Practices

District of Columbia	The Maryland Million Solar Roofs (MSR)	
Maryland	Partnership was recognized as the U.S.	
Virginia	Department of Energy's Million Solar Roofs	
	Initiative (MSR) Best Progress in the Mid-	
	Atlantic Region award winner of 2005 at the	
	Interstate Renewable Energy Council's	
	(IREC) 23rd Annual Meeting in Washington,	
	D.C. during the Solar Power 2005 Conference.	

Tri-State Energy Consumption, 2001

		Trillion Btu's			
	District of				
Fuel Type (2001)	Columbia	Maryland	Virginia	Total	Percentage
Coal	0.70	317.20	482.40	800.30	20.50%
Natural Gas	30.60	191.40	246.70	468.70	12.01%
Petroleum	33.50	568.10	911.20	1512.80	38.76%
Nuclear Electric Power	0.00	142.70	269.10	411.80	10.55%
Hydro Electric Power	0.00	12.00	-12.50	-0.50	-0.01%
Wind & Waste	1.10	28.00	93.20	122.30	3.13%
Other	0.00	0.30	0.60	0.90	0.02%
Electricity: Net Interstate Flows of					
Electricity/Losses	102.30	160.50	323.90	586.70	15.03%
Total	168.20	1420.20	2314.60	3903.00	100.00%

Tri-State Energy Consumption, 2001					
		Million Dollars			
	District of	District of Mandaud Minimize Tri-State			
Fuel Type (2001)	Columbia	Maryland	Virginia	Total	Percent
Coal	\$1.3	\$496.2	\$783.6	\$1,281.1	4.39%
Natural Gas	\$363.0	\$1,890.5	\$1,916.8	\$4,170.3	14.27%
Petroleum	\$381.1	\$5,776.8	\$8,522.5	\$14,680.4	50.25%
Nuclear Electric Power	\$0.0	\$63.6	\$119.0	\$182.6	0.63%
Hyrdo Electric Power	\$0.0	\$24.0	\$0.0	\$24.0	0.08%
Wood & Waste	\$1.8	\$0.0	\$107.2	\$109.0	0.37%
Other	\$0.0	\$0.3	\$0.0	\$0.3	0.00%
Electric Power Sector	-\$8.2	-\$789.3	-\$1,087.4	-\$1,884.9	-6.45%
Electricity: Net Interstate Flows of					
Electricity/Losses	\$740.1	\$3,983.3	\$5,928.4	\$10,651.8	36.46%
Totals	\$1,479.1	\$11,445.4	\$16,290.1	\$29,214.6	100.00%
Source: Energy Information Agency					

Summary

Regional energy goals can be met by developing policies and adopting best practices that significantly increase the energy efficiency of appliances, vehicles, and buildings. Meeting these goals includes diversifying the region's energy sources to include greater use of "green energy" and renewables; and by raising the awareness of energy users so that they can make wise energy choices and opt into a "culture of conservation".

8. REGIONAL ENERGY POLICY FRAMEWORK GUIDES

This section of the Regional Energy Plan compiles all the frameworks used throughout the report. In addition, it includes the outline for an "Energy Transition Scorecard" for MWCOG Region.

List of Frameworks

- 1. New Energy Era Defined
- 2. Multi-Prong Approach to Energy Efficiency & Conservation
- 3. Major Energy Challenges
- 4. Proposed Regional Energy Goals & Objectives
- 5. MWCOG Policy Framework
- 6. Gasoline Policy Discussion Framework
- 7. Range of Possible Effects of Rising Gasoline Prices
- 8. Heating/Cooling Fuel Policy Discussion Framework
- 9. Energy Information System Framework
- 10. Energy Transition Scorecard Outline Framework

1. New Energy Era Defined

A New Energy Era Defined			
Rising global demand	World demand for energy is growing at a		
	rate of 2% per year.		
Tight energy supplies	The large economies of world are beginning		
	to compete more openly to ensure energy is		
	available to meet their economic growth		
	goals.		
High energy prices	High and volatile energy prices are the result		
	of the global demand-supply relationship,		
	and high energy prices are necessary to		
	expand energy supplies.		
"Peak Oil Debate"	Worldwide discussion, debate and analysis		
	is underway as to whether, the world will		
	reach its highest capacity to produce oil		
	starting 20 years from now. Evidence is		
	being mounted to both prove and disprove		
	whether the world is about to enter into a		
	period of "peak oil". Regardless of how the		
	debate is resolved, new sources of oil will		
	require increasingly expensive investments		
	and thus higher prices to sustain those		
	investments.		

	Energy Efficiency & Conservation: Demand Side			
	Areas	Importance in Energy Savings	Best Practices	
Vehicles	Fuel Efficiency Standards	Motor fuel comprises 61% of the petroleum consumed in the District; 54% of the petroleum consumed in Maryland; and 52% of the petroleum consumed in Virginia.	Fuel efficiency standards that meet or exceed the federal standards	
Appliances	Appliance Efficiency Standards	The two biggest contributors to global warming are power plants and automobiles. Electricity comprises 61% of the energy needs of the District; 11% of Maryland, and 14% of Virginia. For the Tri-State Region, almost 26% of the region's energy comes from electricity.	Appliance Efficiency Standards that meet or exceed the federal standards	
Buildings	Building Efficiency	In the United States, buildings account for major sources of total energy use, electricity consumption, greenhouse gas emissions, raw materials use, waste output, and potable water consumption.	Increase number of Green Buildings, in general, and the number of LEED Certified Building, particular.	

2. Multi-Prong Approach to Energy Efficiency & Conservation

	Energy Efficiency & Conservation: Demand Side				
	Areas	Importance in Energy Savings	Best Practices		
Behavior	Prices as a Conservation Incentive	There is an energy price level where consumers will begin to reduce their demand. Policymakers can increase the rate at which consumers reduce their energy demand by using taxes to raise prices.	Proposals and recommendations to use tax policy to maintain energy prices at levels that encourage a reduction in demand		
	Informed Energy Choices	Energy conservation leads to significant reductions in energy consumption.	Energy Education Programs that encourage consumers to make wise energy choices		

	Energy Efficiency & Conservation: Supply Side				
	Areas	Importance in Energy	Best Practices		
		Savings			
Electricity	Renewable Energy	The purchase of wind energy by governments helps stimulate the supply of wind energy, conserves on non- renewable resources, and improves air quality.	Long-term contracts by governments to purchase wind energy		

3. Major Energy Challenges

Major Energy Challenges			
Areas Challenges			
Economic Development	To keep dollars from following away from other regional		
	consumption and services into energy and flowing out of		
	the regional economy into the international economy		
Energy Security	To reduce the effects of potential supply disruptions		
Emergency Planning	To enhance "homeland security"		
Economic Assistance	To assist low and moderate income households		
Provision of Public	To maintain public service delivery while energy costs are		
Services	rising and energy tax revenues may be falling		
Environmental Quality	To improve the environment		
Locational Decisions	To promote living and working locations and activity that		
	are energy efficient; "Smart Growth"		

PRELIMINARY POLICY OBJECTIVES, FOCUS, AND ACTIONS Key Energy Policy Objectives

- 1. To keep dollars from following away from other regional consumption and services into energy and flowing out of the regional economy into the international economy
- 2. To reduce the effects of potential supply disruptions
- 3. To enhance "homeland security"
- 4. To assist low and moderate income households, with special attention to those using heating oil and propane
- 5. To maintain public service delivery while energy costs are rising and energy tax revenues may be falling
- 6. To improve the environment
- 7. To promote living and working locations and activity that are energy efficient

Conservation/Demand/Efficiency			
Focus	Policy		
High prices encourage consumers to engage in wise energy practices	Prices & Taxes: Explore using some combination of the price system (relative high energy prices) and the tax system (new energy taxes) to raise the importance of energy conservation and efficiency and to fund energy assistance and energy efficiency and energy affordability assistance and tax incentives.		
Guiding energy consumption choices	Tax Incentives for Energy Efficiency (Energy Start Appliances). Expand use of tax incentives and reduction of sales taxes to promote the purchase of energy efficiency appliances.		

Conservation/Demand/Efficiency			
Focus Policy			
Standards to improve energy efficiency of appliances will play a major role in improving the energy efficiency of the region and mitigating the effects of the high and rising energy prices.	Appliance Standards: Promote the adoption of appliance standards. The Maryland Energy Office has been pursuing that issue, but their actions on hold to wait for the regulations for the new energy bill.		
Standards to improve energy efficiency of structures have played a major role in improving the energy efficiency of the region. The building code is an	Building Energy Efficiency Standards: Insure that the ongoing updating of the local building codes include the latest in energy efficiency and assess whether the rate can be increased that those standards can be strengthened.		
important policy tool to foster energy efficiency.	Government Buildings: Improve the energy efficiency of government buildings through performance contracting and through bond funding for energy improvements in government buildings. Prince George's County has a major initiative to improve the energy efficiency of its school buildings.		
Reduction of the use of motor fuel is critical if the region is going to reduce its dependence on petroleum.	Alternative Fuel Vehicles (Consumers/Businesses): Publicize tax and non-tax incentives (federal, state, and local incentives) for hybrid fuel vehicles and vehicles that increase the average miles pre gallon.		
	Alternative Fuel Vehicles (Government): Adopt at the regional level the state level mandates the purchase of AFVs. The District of Columbia Government has set a standard that is higher than the federal standard.		
Promoting a variety of sources and of distribution networks will promote energy independence.	Renewable Energy: Expand the purchase of renewable (green) energy through aggregation agreements. Montgomery, Fairfax and Price Georges County all have municipal aggregation agreements that include renewable energy.		

Conservation/Demand/Efficiency			
Focus	Policy		
As	ssistance/Affordability		
Mitigating the effect of high prices on low and moderate income households will be	Energy Assistance Funding: Expand state and local funds for Low Income Home Energy Assistance.		
important because of the differential effects of higher energy effects due to income groups.	Energy Assistance Tax Credits (Costs): Explore tax credits for energy assistance for direct relief of high energy costs.		
	Energy Tax Credits (Efficiency) Publicize tax credits for building energy improvements and explore expanding those credits when appropriate.		
Contingency	Planning/Emergency Planning		
The potential for short-term energy shortages has increased because world demand has grown faster than the world supply (including production and distribution capacity).	Intergovernmental Cooperation: Update the agreement to manage energy shortages if they energy.		

4. Proposed Regional Energy Goals and Objectives

Regional Energy Goals and Objectives Proposed Energy Goal

Energy Independence for

• Sustained Economic Growth

• Enhanced Energy Affordability

- Increased Energy Security & Stability
- Improved Environmental Quality

Proposed Regional Energy Policy: Economic Objectives

- Insure adequate and reliable energy supply to support the region's economic growth and development
- Minimize outflow of dollars from region's economy
- Assist low and moderate income household to cope with the high cost of energy
- Maintain public service delivery in an era of rising energy prices
- Seek opportunities for aggregation of energy purchases
- Support policies that result in cost-effective energy efficiency standards

Illustrative Policies/Best Practices to Support Economic Objectives

- Develop Tax and other incentives
- Promote the adoption of appliance standards
- Update Building Energy Efficiency Standards
- o Improve energy efficiency in Government Buildings
- Expand state and local funds for Low Income Home Energy Assistance
- Support Cost-Savings Through Aggregate Energy Purchases

Proposed Regional Energy Policy: Environmental Objectives

- Support implementation of energy technologies that are environmentally sound
- Promote development and implementation of renewable energy sources
- Promote development and implementation of alternatively, clean fueled vehicles
- Promote and implement energy conservation practices to reduce energy consumption and limit environmental impacts of energy production and use

Illustrative Policies/Best Practices to Support Environmental Objectives

- Publicize tax & non-tax incentives for hybrid fuel vehicles and other alternative fuel vehicles
- Adopt at the regional level the state level mandates the purchase of AFVs
- Expand the purchase of renewable (green) energy through aggregation agreements
- Expand regional wind energy purchase agreement
- Incorporate ENERGY STAR equipment into MWCOG's cooperative purchasing program
- Encourage a regional agreement for LEED Standard for SIP credit

Proposed Regional Energy Policy: Security and Stability Objectives

- Protect Critical and Vital Energy Resources
- Reduce Dependence on Foreign Sources of Oil/Petroleum Products
- Reduce Potential Impacts of Energy Supply

Illustrative Policies/Best Practices to Support Energy Security Objectives

- Implement and Regularly Exercise and Test Regional Emergency Plans to Mitigate the Impacts of Energy Supply Disruptions
- Promote Redundancy and Reliability Improvements in the Region's Energy Infrastructure
- o Support Diversification of Regional Energy Portfolio
- o Reduce Potential Impacts of Energy Supply Disruptions
- Ensure the Coordination Among Groups Involved in Energy Emergency Planning and Preparedness

5. MWCOG Policy Framework

MWCOG Policy Framework			
Area Policy Actions			
Behavior	Guiding energy consumption choices		
Consumption Levels	Reducing demand		
Consumption Efficiency	Improving efficiency		
Source Variety	Promoting a variety of sources and of distribution		
	networks		
Assistance	Mitigating the effect of high prices on low and		
	moderate income households		
Contingency Planning	Managing crises		

GASOLINE POLICY DISCUSSION FRAMEWORK				
Over 50 percent of the petroleum used in the Tri-State Area is for motor fuels				
Policy Area	Policy Tool	Consideratio	ons	
Vehicle Miles Per Gallon (Efficiency)	Standards to improve vehicle efficiency	The role of mileage standards in reducing the demand for petroleum	Improving Environmental Quality	
Behavior (Commercial/ Commuting Practices)	Prices to Guide Choices	The role of relatively high prices in reducing the demand for gasoline, since trends suggest it has only been since July 2005, after three years of rising gasoline prices that gasoline sales have begun to decline	Managing Differential Effects on Income, Business, and Government Groups	
	Taxes to Shift Demand	The role of motor fuel taxes to shift demand and to keep energy dollars from flowing out of the region	Strengthening the Regional Economy	
Tax System	Taxes to Raise Dedicated Revenue	 The adverse of effects on tax collection due to reduced gasoline consumption, in turn, due to increasing gasoline prices, leads to a reduction in gasoline purchased (Note: the amount of tax collected varies with volume sold, not with price) 	Improving Productivity of Tax System	
Supply Disruptions	Regional Plans to Allocate Supplies if a Shortage Occurs	The potential for short-term shortages since the worldwide demand for petroleum is increasing faster than worldwide supply	Managing Temporary Shortages Expanding Use of Alternative Fuels Promoting Efficiency & Conservation	

6. Gasoline Policy Discussion Framework

RANGE O	RANGE OF POSSIBLE EFFECTS OF RISING GASOLINE PRICES				
Transportation	Household	Business	Government	Environment	
Reduced Gasoline	Reduced	Reduction in	Increase cost	Less air	
Usage	shopping and	business	of operations	pollution	
	eating out	volume			
Reduction in	Reduced	Reduction in	Reduction in	Greater air	
Inefficient	consumption of	business	Services	quality	
Vehicles	other important	receipts		compliance	
	items like				
	medicine				
Greater Transit	Increased	Reduced	Reduction in	Greater air	
Use	delinquencies in	profit	motor fuel	quality	
 Metro Rail 	monthly	margins	taxes	compliance	
 Metro Bus 	payments				
 Local Bus 					
More Carpooling	Increased	Increased	Increase in	Greater air	
	number of	prices if	requests for	quality	
	households	market will	energy	compliance	
	needing energy	allow higher	assistance		
	assistance	energy costs			
		to pass			
		through			

7. Range of Possible Effects of Rising Gasoline Prices

HEATING	G/COOLING FUEL PO	OLICY DISCUSSION FR	AMEWORK
21 percent of the	e energy used in the Tri-	State Area is for natural gas	and distillate fuels
Policy Area	Policy Tool	Considera	tions
Building Energy	Standards to improve	The role of the building co	des in fostering
Efficiency	energy efficiency of	energy efficiency	
Standards	structures		
Appliance	Standards to improve	The role of efficiency stand	dards in fostering
Efficiency	energy efficiency of	energy efficiency	
Standards	appliances		
Behavior	Prices to Guide		Improving
	Choices		Environmental
			Quality
			Managing
		The role of relatively	Managing Differential
	Education/Awareness to Guide Choices	high prices in	Effects on
		encouraging consumers	Income, Business,
		to engage in wise energy	and Government
		practices	Groups
		-	-
			Strengthening the
			Regional
			Economy
Tax System	Tax Incentives for	The role of tax policy in gu	
	Energy Efficiency	choices, keeping dollars in	
		financing energy efficiency initiatives.	y and conservation
		Initiatives.	

8. Heating/Cooling Fuel Policy Discussion Framework

9. Energy Efficiency Information System

ENERGY EFFICIENCY INFORMATION SYSTEM

	as MWCOC to work with member jurisdictions to consider re
	ne MWCOG to work with member jurisdictions to consider re- purchasing, residential energy demand messages, public sector
0	uilding and technology energy budgeting and commercial sector,
_	s and the construction industry, to meet metro cultivated efficiency
objectives.	s and the construction industry, to meet metro currivated efficiency
	objectives an EIS allows include:
	ency At Both Jurisdictional and Metro Levels
01	hergy Planning and Policy (Metro Energy Security)
0,000	y Planning and Contingency
Jurisdictional Level	Data on energy consumption and expenditure patterns, by fuel
Data	type, in the residential, industrial, and commercial sectors
Duiu	type, in the residential, industrial, and commercial sectors
	To assist policymakers and utilities to <u>plan</u> more effectively for
	energy-related contingencies such as:
	energy related contingeneres such as.
	Supply interruptions
	 Terrorist disruption of transmission and distribution lines,
	transformers, storage depots and
	• Other contingencies with alternative short-term supply
	alternatives.
Metropolitan-wide	Data on patterns of energy consumption and expenditure, by fuel
Data	type
	These data, configured and maintained in an EIS database by the
	MWCOG, including appropriate Geographic Information Systems
	data and satellite-generated data on energy infrastructure, can be
	used to:
	• Generate regional energy intelligence,
	Create planning scenarios
	• Promote short and longer-term federal, state and regional
	energy policy and planning.
Data to Suppliers of	Data on utilities, fuel oil companies, alternative and renewable
Energy	energy companies at the
	Micro level (census-track, zip code) Residential, institutional,
	commercial, public sector and industrial levels
	commercial, public sector and industrial levels
	Macro-level: multi-jurisdictional, Washington metropolitan
	aggregate levels.
L	456105400 10 YOLS.

10. Energy Transition Scorecard

THE ENIGMATIC EFFECTS OF RISING GASOLINE PRICES ON THE REGION OF METROPOLITAN WASHINGTON COUNCIL OF GOVERNMENTS

Stylized Facts

1. Gasoline prices have been increasing

2. Demand for gasoline has remained unchanged and in some cases has increased

3. Metro Ridership not up due to rising gasoline prices

3. Metro Ridership not up	due to rising gasoline prices
Major Economic Question	If rising gasoline prices do not lead to a reduction in the
	quantity of gasoline consumed – total or average then
	what changes are taking place outside of the gasoline
	market to accommodate the increase in gasoline prices?
	In other words, what adjustments are taking place outside
	of the gasoline markets?
Key MWCOG Policy	As long as gasoline supplies are adequate, policymakers
Enigma	will have to look to areas other than the reduction in
	demand for gasoline to understand the effects of rising
	gasoline prices on households, businesses, and
	governments in the region.
If rising gasoline prices do	Households are reducing their consumption of other
not lead to a reduction in the	goods & services
demand for gasoline, then	Businesses are reducing other costs – non-energy costs
how are households and	Business and households are replacing existing vehicles
business adjusting to these	with more fuel-efficient vehicles.
higher prices?	
If rising gasoline prices do	Declining sales and or sales tax receipts from small
not lead to a reduction in the	businesses
demand for gasoline, then	
where do regional policy	Negative effects on low-income consumers
makers look to find early	
warnings signals to respond	Decreasing numbers of people working at individual
to rising energy prices?	businesses
	Reduction in number of operating businesses that is
If vision and a line waited 1	dependent on gasoline.
If rising gasoline prices do not lead to a reduction in the	Air quality improvements will not be realized because
	demand is not falling.
demand for gasoline, then what are the prospects of	
improving air quality through	
the reduction in the demand	
for gasoline?	
ioi gasoiine:	

Trend	Economic Concept	Discussion
		MWCOG Policy Challenge
Gasoline Demai	nd	
Rising gasoline does not lead to a reduction in the total or average miles driven	Price Inelasticity of the Demand for Gasoline	Short Run: Rising prices of gasoline may not lead to a reduction in demand – in total or average miles driven. In such a situation, quantity demanded is considered to be price inelastic. This may be particularly true in the short-run. In the short-run, consumers may not be able to alter their habits, such as commuting patterns, the average miles per gallon of existing automobiles, or the location of services only available by car. So in the short-run, there may be little responsiveness to rising gasoline prices.
Rising gasoline does not lead to a reduction in the total or average miles driven	Price Inelasticity of the Demand for Gasoline	Long Run: Over time, there may be a change in "habits" – in consumption and driving patterns or in the types of vehicles purchased. Over time consumers may be able to alter their "habits", such as commuting patterns, the average miles per gallon of existing automobiles, or the location of services only available by car.

	Deman	d for Non-Gasol	ine Goods & Services
Rising gasoline prices lead to a reduction in the demand for non- gasoline purchases	Substitution of Goods & Services	Rising gasoline prices may lead consumers to reduce their consumption of energy. Because of rising energy prices, they may cut back spending on other items such as food, entertainment or clothes.	This may be the major policy challenge, identifying the effects of rising gasoline on the reduction of consumption of other goods and services. In other words, the early warning signals for rising gasoline prices may show up in the non-gasoline sales.
Rising gasoline prices lead to a reduction in the gasoline because budgets can absorb significant increases prices	Substitution of Goods & Services	For the "average" household in the Southern Region, with an income of \$76,000 and spending \$1,400 a year on motor fuels,	The major policy challenge here is the effects of the rising gasoline on those with incomes below the average.

Rising	Real income	If energy	The policy challenge is to identify the
gasoline	effects offset	prices are	areas of the economy where rising
prices lead		rising, but	gasoline are having a negative effect.
to		overall prices	
significant		are relatively	
increases in		stable or	
overall		falling, then	
inflation		the effects of	
		rising prices	
		may not have	
		an effect on	
		overall real	
		purchasing	
		power.	

Non-Gasoline C	Non-Gasoline Company Prices, Costs and Profits						
Rising gasoline prices lead to significant increases in overall inflation	Retail prices remain relatively constant causing internal company adjustments	Due to globalization and other competitive forces, companies may not be able to increase prices, even if energy costs are increasing.					
Overall Econom	nic Activity						
Rising gasoline prices lead to reductions in economic output	Energy efficiency/Energy Management	More housing, population, employment and sales are evident. Economic growth is taking place without significant increases in energy, which suggests that rising gasoline prices may not have a dramatic effect on the economy as whole.					

Overall Econom	Overall Economic Activity							
Rising gasoline prices have not lead to reductions in economic output	Energy efficiency/Energy Management	With more housing, population, employment and sales, economic growth is taking place without significant increases in energy consumption.						
Rising gasoline prices are causing increasing amount of money to flow out of the region	Exporting Dollars from the Regional Economy	With gasoline prices rising, and demand steady, more and more money is exported out of the local economy. Alternatively, more spending could be injected into the regional economy if spending were shifted away from gasoline purchases.						

Prices								
	1990	2000	2001	2002	2003	2004	2005	
Crude Oil								
\$ per barrel								
Gasoline								
\$ per gallon								
Heating Oil								
\$ per gallon								
kWh								
\$ per kWh								

Table 8.1: Example Score Card at a Glance - Prices

Source: Jerome S. Paige & Associates

Table 8.2: Example Score Card at a Glance – Tax Receipts

Tax Receipts										
1990 2000 2001 2002 2003 2004 2005										
Motor Fuel										
Gross Receipts										

Source: Jerome S. Paige & Associates

Table 8.3: Example Score Card at a Glance – Rate of Growth

Rate of Growth of Gross State Product & Energy Consumed								
	1990	2000	2001	2002	2003	2004	2005	
District of Columbia GSP								
District of Columbia Consumption								
Maryland GSP								
Maryland Consumption								
Virginia GSP								
Virginia Consumption								

Source: Jerome S. Paige & Associates

Economic/Demographic									
1990	2000	2001	2002	2003	2004	2005			
	1990 								

Table 8.4: Example Score Card at a Glance – Economic/Demographic

Source: Jerome S. Paige & Associates

Table 8.5: Example Score Card at a Glance – Alternative Fuels

		Alte	rnative F	uels			
	1990	2000	2001	2002	2003	2004	2005
AFVS							
Wind Power							
Solar Power							
Average MPG of							
Automobiles							

Source: Jerome S. Paige & Associates

Table 8.6: Example Score Card at a Glance – Locational Codes

		Locat	tional Ch	oices			
	1990	2000	2001	2002	2003	2004	2005
Percent of New							
Construction within							
x miles of Metro							
Average Miles							
Driven to Work							
Average Vehicle							
Miles Driven							

Source: Jerome S. Paige & Associates

Summary

As the Region transitions to a new energy era defined by rising global demand, tight global energy supplies and high global energy prices, policymakers will need several guides to help shape a new energy future. Throughout this report several matrices were provided to help summarize actions policymakers can consider and some of the implications of those suggested actions. This section compiles an overview of the various frameworks presented and referenced in the full report.

9. SECTOR RESEARCH

Residential Research Approach

A thorough review has been made of the likely sources of energy consumption, price and expenditure information for the non-government sectors (Residential, Commercial, Industrial, and Transportation) for 1990 and 2000-2004. See APPEN_9.A for a definition of each sector. The review included web searches and telephone conversations to confirm the existence, or lack thereof, of consumption-price-expenditure information and the ability to disaggregate the available information to the jurisdictional level. As can be seen in the Table 9.1, none of the agencies or organizations listed could provide the energy consumption/price/expenditure information, disaggregated by jurisdiction, for the desired time frames for the non-governmental sectors.

AGENCY/ORGANIZATION	CONSUMPTION & PRICE EXPENDITURE DATA	DATA CAN BE DISAGGREGATED
MWCOG Headquarters	Very Limited	Yes
MWCOG 19 Jurisdictions	Very Limited	Yes
Public Service Commissions (3) and State	Yes	No
Energy Administration Offices		
Energy Information Administration (EIA)	Yes	No
Chambers of Commerce for jurisdictions (15)	No	n/a
National Association of Counties (NACO)	No	n/a
National Association of Regional Councils	No	n/a
National League of Cities	No	n/a

 Table 9.1: Agency/Organization Resource Summary

Source: Jerome S. Paige & Associates

For parallelism in reviewing energy consumption, price and expenditure data, it seemed best to follow the report format used by the U.S. Energy Information Administration (EIA) for the jurisdictional information and, to the extent possible to use the same sources for gathering and/or deriving the data. Table 9.2 summarizes the EIA primary sources of information but does not list every source that is used or portray the complexity inherent in the consumption, price and expenditure estimates that are prepared for each state on an annual basis.

ENERGY	DATA SOURCE	COMMENT
Gas	Service utility companies, gas producers, processors, distributors, storage operators and pipeline operators	Companies submit data EIA form 176) in aggregate by state
Electricity	Service utility companies, electric power producers, wholesale power marketers, energy service providers	Companies submit data (EIA form 861) in aggregate by state
	Dealer Survey	EIA Survey forms (821 and 782c) that were sent to 3800 dealers nationwide are confidential and disaggregation may not be statistically valid
	EIA survey of Power Plants and State	
Petroleum	Energy Data Systems (SEDS)	EIA combines the coal consumed for the residential and commercial sectors and factors an amount (less than one percent of all coal consumed). State consumption figures are used for the industrial sector. No data is available for
	EIA survey, Census data and U.S. Bureau of Census Manufacturing and	the transportation sector.
Coal	Industries survey and SEDS	EIA combines information from these sources to derive consumption and expenditure information.

Table 9.2: EIA Primary Sources of Consumption, Price and Expenditure Information

Compiled By: Jerome S. Paige & Associates

Data Collection

The public service commissions for Maryland, Virginia and the District of Columbia were contacted to determine the suppliers of natural gas and electric services to the MWCOG jurisdictions. The suppliers listed in APPEN_9.B were contacted directly (by telephone and email) and asked to provide energy consumption and price information for 1990 and 2000-2004 by jurisdiction and, within jurisdiction, by sectors (Residential, Commercial, Industrial and Transportation).

Non-Government Sector Gas & Electric Service Suppliers

Requests were made to the utility suppliers during March 15-30, 2005. See sample request in APPEN_9.C. Numerous phone calls were made and emails sent to garner the requested information. As can be seen from APPEN_9.D it took almost five months to secure the requested data and in most instances, not all of the requested information was provided.

Two jurisdictions, Montgomery County and Manassas, were able to supply energy information from their own databases. In every other instance, the information requested required the suppliers to generate non-standard report information and in several instances (PEPCO Energy Services and Washington Gas), listings of jurisdictional zip codes were provided to facilitate company extraction of information in disaggregated form from their databases (see APPEN_9.E & APPEN_F) for the zip code listing by jurisdiction). One company supplied the information by zip codes per year, per segment so it was necessary to sort and summarize the data for each jurisdiction. Only one supplier, Northern Virginia Electric Cooperative (NOVEC), required payment (\$10,000) to supply the requested information. The NOVEC request was withdrawn. Information received from BGE Home Services and Columbia Gas of Virginia was provided for the entire region served by the firm and neither firm could provide a method (zip codes, market share or percent of total sales) for disaggregating its data.

Although there are database issues and time constraints, the gas and electric utilities are by far the best source of energy information and, by working with each supplier, a consumption and price profile (by sector within each jurisdiction) can be completed and maintained as part of the recommended Energy Intelligence System (EIS) discussed in Section 6.3 of this report.

Residential-Specific Sector Information

In addition to the gas and electric information supplied by the utility service companies, EIA information was culled to determine the best approach for building a jurisdictional profile for the other energy sources (petroleum, coal, wood and solar). The findings from this review are recapped below.

Petroleum:

The Residential Sector uses three types of petroleum products; specifically, distillate fuel, kerosene and liquefied petroleum gas (LPG). EIA annually collects and maintains petroleum product consumption and expenditure information and reports these residential petroleum products by State. Efforts were made to secure the raw data (EIA survey forms 821 and 782c) for Maryland and Virginia (the District of Columbia would not need to be disaggregated) but the request was denied because the information is confidential to EIA and there is serious concern that any approach used to disaggregate the data may be statistically invalid. Since petroleum dealers are encouraged to submit the survey forms to their state energy administration office, these offices were contacted for raw data. The state administration offices do not receive these forms consistently so the states' raw data are incomplete.

A list of the petroleum dealers that have participated in the EIA petroleum dealer survey for Maryland, Virginia and the District of Columbia was secured for future reference. Fifty-five (55) dealers report sales in Virginia, 43 report sales in Maryland and 16 report sales in the District of Columbia. Only three of the firms reporting sales in Maryland, Virginia and the District of Columbia are based in Virginia (two firms) or Maryland (one firm).

It is difficult to disaggregate the petroleum information to the jurisdictional level for the residential sector since, according to a representative from the Maryland Energy Administration; dealers are reluctant to provide information even to the State. Consequently, the following alternate approaches were considered.

- a) Using the EIA petroleum information by region (Maryland, Virginia and the District of Columbia) to develop a "per household" petroleum measure to be applied to the corresponding census year household population.
- b) Using the house heating fuels Census information to assess the trend in petroleum usage for the residential sector.

Because petroleum consumption in the Residential Sector is minor compared to natural gas and electricity, the emphasis was placed on securing gas and electricity consumption and using the U. S. Census information to determine the trend in petroleum usage among MWCOG households.

Wood, Geothermal, Coal and Solar Energy

EIA also estimates wood, geothermal, coal and solar energy usage for the Residential Sector by year, by State. As with petroleum usage, a "per household" measure for each fuel type could be calculated and applied to Census household populations or the Census house heating fuel information could be used to monitor trends with these energy sources. Collectively, these energy sources represent very limited usage by the Residential Sector so the house heating fuels Census information was used for this report to look at trend in usage versus the amounts of each type of energy consumed.

Residential Energy "End-Use" Data Collection

EIA conducts an annual survey of the Residential Sector energy end-use (space heating, water heating, air conditioning and appliances). The information is collected by Census Region and cannot be disaggregated. The 19 MWCOG jurisdictions fall in the South Census Region. The data is calibrated for households per square miles and annual weather norms (precipitation, heating-degree and cooling-degree days) per for each State within the South Census Region. Per household calculations are provided for each energy source end-use. It appears the only way to secure end-use information by jurisdiction is to conduct primary research either as an independent project or as a sub-set of the EIA annual survey.

MWCOG Government Sector Research

All 19 of the regions jurisdictions were contacted either via email and/or telephone to obtain consumption and expenditure data for the state and local government area. As mentioned in an earlier status report our initial contact was an introductory email on March 28, 2005, introducing them to the project and deliverable.

That letter stimulated much feedback, which resulted in various conference calls starting April 1 through April 5, 2005. Each jurisdiction was encouraged to call in and share feedback regarding initial request. Over the next several months, correspondence and questions were provided to each jurisdiction regarding deliverables and next steps. The final deadline was extended until July 1, 2005.

As of August 15, 2005 the following jurisdictions responded, which represent 31.6% of those contacted:

Jurisdiction	Provided By	Information Received
City of Bowie	Joy Tyson/Byron Matthews	Data Sheet
Prince William County	Prashant Shrestha	Data Sheet
City of College Park	Sara Imhulse/Joe Nagro	Data Sheet
Loudoun County	Najib Salehi	Data Sheet
Loudoun County	Michael Barancewicz/John Lord	Data Sheet
Loudoun County	Jnajib Laehi	Data Sheet
Montgomery County Maryland	Mark Ricketts	Fuel Use for Montgomery County
City of Gaithersburg	Bob Peeler	Data Sheet
District of Columbia	Howard Ebenstein	District's Cost

Table 9.3: MWCOG Sample Research

Compiled By: Jerome S. Paige & Associates

Summary

This section demonstrates the approach used to collect data on energy consumption, expenditures, and prices from both government and non-governmental sources. The section highlights several of the challenges in getting current data. Further it illustrates that with the assistance of the major energy suppliers for the region, a local energy information system can constructed. Supplementary a successful regional energy system can provide the baseline data needed to measure the progress, outline trends, and provide early warning signals related to energy needs and/or concerns within the region.

10. RECOMENDATIONS & INITIATIVES

As demonstrated throughout this document, the MWCOG should focus on several initiatives to ensure adequate energy for the region presently and going forward. Thus, we recommend the following:

- Key Recommendations
 - Adopting a Regional Energy Information System
 - Setting Regional Energy Savings Targets
 - Expanding Education & Outreach
 - Monitoring & Updating Energy Policy & Planning

Appendix 10.A provides a comprehensive PowerPoint outlining the proposed recommendations and solutions.

MWCOG Regional Energy Plan

APPENDIX 2

APPEN_2.A List of the Energy Programs for Virginia.

Energy Efficiency and Renewable Energy in Virginia
Energy Efficiency and Conservation Virginia Building Energy Codes Source: Building Energy Codes
State Energy Management Programs Source: Federal Energy Management Program
Weatherization and Low-Income Energy Programs Source: Weatherization Assistance Program Renewable Energy Virginia Bioenergy Resources Source: State Energy Alternatives
Virginia Hydropower Resources Report Source: INEEL Hydropower Program
Virginia Wind Activities Source: Wind Powering America
Distributed Energy Information for Virginia Source: Distributed Energy Program
Solar Resources Source: State Energy Alternatives
Wind Resource Map Source: Wind Powering America
Transportation Transportation Fuel Vehicle Incentives and Laws in Virginia Source: Alternative Fuels Data Center
State Energy Program Energy Office Project Briefs Source: SEP newsletter, <i>Conservation Update</i>
SEP Projects in Virginia Source: State Energy Program (SEP)
Financial Incentives for State Consumers Virginia Incentives for Renewable Energy Source: Database of State Incentives for Renewable Energy
State Publications Virginia Case Studies Source: State Energy Program
Virginia Publications on Renewable Energy and Energy Efficiency Source: State Energy Program
http://www.eere.energy.gov/states/state_specific_information.cfm/state=VA

APPEN_2.B Virginia Incentives for Renewable Energy

Virginia Incentives for Renewable Energy http://www.dsireusa.org/library/includes/map2.cfm?CurrentPageID=1&State=VA

Financial Incentives

Industry Recruitment Solar Manufacturing Incentive Grant (SMIG) Program

Property Tax Exemption Local Option Property Tax Exemption for Solar

State Grant Program Virginia Small Wind Incentives Program (VSWIP)

Alternative Fuel and Vehicle Incentives U.S. Department of Energy's Alternative Fuels Data Center

Rules, Regulations & Policies

Generation Disclosure Fuel Mix and Emissions Disclosure

Interconnection Interconnection Standards

Net Metering Net Metering Solar Access Law/Guideline

Solar Easements

Solar and Wind Access Law Rockingham County - Small Wind Ordinance

Alternative Fuel and Vehicle Policies U.S. Department of Energy's Alternative Fuels Data Center

APPEN_2.C Energy Programs for the District of Columbia

Energy Efficiency and Renewable Energy in District of Co The following are links to EERE Web sites that have District of Columbia	-specific pages.
Energy Efficiency and Conservation District of Columbia Building Energy Codes Source: Building Energy Codes	
State Energy Management Programs Source: Federal Energy Management Program	
Weatherization and Low -Income Energy Programs Source: Weatherization Assistance Program	
Renewable Energy District of Columbia Bioenergy Resources Source: State Energy Alternatives	
District of Columbia Wind Activities Source: Wind Powering America	
Distributed Energy Information for District of Columbia	
Source: Distributed Energy Program	
TransportationTransportation Fuel Vehicle Incentives and Laws in District of Columbia	<u>a</u>
Source: Alternative Fuels Data Center	
State Energy ProgramEnergy Office Project BriefsSource: SEP newsletter, Conservation Update	
Sep Projects in District of Columbia Source: State Energy Program (SEP)	
Financial Incentives for State Consumers District of Columbia Incentives for Renewable Energy Source: Database of State Incentives for Renewable Energy	
State Publications District of Columbia Publications on Renewable Energy and Energy Efficienc Energy Program	y Source: State
http://www.eere.energy.gov/states/state_specific_information.cfm/state=DC	

APPEN_2.D District of Columbia Incentives for Renewable Energy

District of Columbia Incentives for Renewable Energy http://www.dsireusa.org/library/includes/map2.cfm?CurrentPageID=1&State=DC **Financial Incentives ? State Grant Program** District of Columbia Renewable Demonstration Project **Alternative Fuel and Vehicle Incentives** U.S. Department of Energy's Alternative Fuels Data Center **Rules, Regulations & Policies Generation Disclosure** Fuel Mix Disclosure Interconnection Interconnection Standards **Net Metering Rules** Net Metering **Public Benefits Fund** Reliable Energy Trust Fund **Renewables Portfolio Standard** Renewables Portfolio Standard **Alternative Fuel and Vehicle Policies** U.S. Department of Energy's Alternative Fuels Data Center

APPEN_2.E Maryland List of Energy Programs

Energy Efficiency and Renewable Energy in Maryland
Energy Efficiency and Conservation Maryland Building Energy Codes Source: Building Energy Codes
State Energy Management Programs
Source: Federal Energy Management Program
Weatherization and Low-Income Energy Programs
Source: Weatherization Assistance Program Renewable Energy Maryland Bioenergy Resources Source: State Energy Alternatives
Maryland Hydropower Resources Report
Source: INEEL Hydropower Program
Maryland Wind Activities Source: Wind Powering America
Distributed Energy Information for Maryland Source: Distributed Energy Program
Solar Resources Source: State Energy Alternatives
Wind Resource Map
Source: Wind Powering America
Transportation Transportation Fuel Vehicle Incentives and Laws in Maryland Source: Alternative Fuels Data Center
State Energy Program Energy Office Project Briefs Source: SEP newsletter, Conservation Update
SEP Projects in Maryland Source: State Energy Program (SEP)
Financial Incentives for State Consumers Maryland Incentives for Renewable Energy Source: Database of State Incentives for Renewable Energy
State Publications Maryland Case Studies Source: State Energy Program
Maryland Publications on Renewable Energy and Energy Efficiency Source: State Energy Program
http://www.eere.energy.gov/states/state_specific_information.cfm/state=MD

APPEN_2.E Maryland List of Energy Programs CONT'D

Maryland Incentives for Renewable Energy http://www.dsireusa.org/library/includes/map2.cfm?CurrentPageID=1&State=MD

Financial Incentives

Corporate Tax Credit

Corporate Income Tax Credit for Green Buildings

Local Rebate Program Montgomery County - Clean Energy Rewards Program

Personal Tax Credit Personal Income Tax Credit for Green Buildings

Property Tax Exemption Local Option - Corporate Property Tax Credit Special Property Assessment

Sales Tax Exemption Wood Heating Fuel Exemption

State Loan Program Community Energy Loan Program State Agency Loan Program

State Rebate Program Solar Energy Grant Program

Alternative Fuel and Vehicle Incentives U.S. Department of Energy's Alternative Fuels Data Center

http://www.dsireusa.org/library/includes/map2.cfm?CurrentPageID=1&State=MD

APPEN_2.E Maryland List of Energy Programs CONT'D

Maryland Incentives for Renewable Energy
Rules, Regulations & Policies
Generation Disclosure
Fuel Mix and Emissions Disclosure
Green Power Purchasing/Aggregation
Montgomery County - Green Power Purchasing
Prince George's County - Green Power Purchasing
State of Maryland - Clean Energy Procurement
Interconnection
Interconnection Standards
Net Metering Rules
Net Metering
Renewables Portfolio Standard
Renewable Energy Portfolio Standard and Credit Trading
Solar Access Law/Guideline
Solar Access
State Construction Policy
Life Cycle Costs in State Building Projects

APPEN_2.F U.S. Department of the Energy's Efficiency and Renewable Energy Programs & Activities by State

Related Programs & Initiatives

Green Power Network: Buying Green Power in Your State ?The U.S. Department of Energy's Green Power Network provides news and information on green power markets and related activities. This site provides state-by-state information on Green Power Marketing in Competitive Electricity Markets and Utility Green Pricing Programs.

In addition, the site lists marketers of Renewable Energy Certificates (RECs -- also known as green tags or tradable renewable certificates), which represent the environmental attributes of the power produced from a renewable energy project. Whether or not consumers have access to green power through their local utility or a competitive electricity marketer, consumers can purchase RECs without having to switch electricity suppliers.

Million Solar Roofs Initiative ?The U.S. Department of Energy's Million Solar Roofs (MSR) Initiative brings together business, government, the energy industry, and community organizations with a commitment to install a set number of solar energy systems by 2010. Activities typically include consumer education, professional workshops, and other outreach activities to help individuals and organizations who are considering installing a solar system. Click here to find Partnerships in your state.

Wind Powering America ?The U.S. Department of Energy's Wind Powering America site provides state-by-state wind project information, including validated wind maps, anemometer loan programs, small wind guides, legislative briefings, wind working groups, and state-specific news.

Source: The Database of State Incentives of Renewable Energy (DSIRE)

MWCOG Regional Energy Plan

APPENDIX 6

		A	PPEN 6.A			
MWCOG Residential Natural Gas Consumption						
Years 1990 and 2000-2004						
(in Therms)						
Jurisdiction	1990	2000	2001	2002	2003	2004
Alexandria	12,518,054	15,143,151	14,229,176	15,012,307	17,616,892	11,261,119
Arlington	22,497,929	25,861,171	23,389,363	24,654,751	27,277,170	17,322,835
Bowie	1,112	15,850,986	14,870,430	15,848,690	17,622,868	11,628,231
College Park	N/A	3,411,289	3,416,658	3,224,658	8,778,097	2,544,573
District of	104,011,435	100,969,445	95,620,402	94,161,986	1,441,753	69,592,559
Columbia						
Falls Church	13,511,941	15,665,023	14,053,282	14,645,070	1,277,910	10,039,885
Fairfax City	12,954,305	21,587,925	21,818,051	22,109,064	26,185,889	17,833,029
Fairfax	56,032,056	84,126,795	82,541,397	83,710,888	96,770,184	65,886,376
County						
Frederick	N/A	456	771	591	937	570
Gaithersburg	N/A	13,608,166	13,554,099	14,635,796	17,039,196	11,000,956
Greenbelt	N/A	564,764	585,001	573,477	533,184	469,661
Loudoun	2,655,949	17,251,916	21,266,658	24,876,740	23,064,248	24,333,477
County						
Manassas	636,238	1,620,300	1,945,250	2,353,191	2,359,523	2,075,562
Manassas	1,651	654,438	793,983	892,743	888,188	815,400
Park City						
Montgomery	2,734	78,916,441	77,102,918	77,889,696	77,439,787	58,970,896
County						
Prince	N/A	81,636,706	80,647,138	80,544,297	79,812,732	63,238,664
George's						
County	11.000	10.000.005	10 50 5 51 5			10 (52 20)
Prince	11,098,759	19,009,396	19,595,512	22,281,084	22,520,901	19,652,384
William						
County		21.007.010	20.050.701	21 (41 0 42	21.047.050	22 721 254
Rockville	N/A	31,807,018	30,950,701	31,641,949	31,847,850	23,721,354
Takoma	N/A	N/A	N/A	N/A	N/A	N/A
Park	tan Car					
Source: Washington Gas						

APPEN_6.A MWCOG Residential Natural Gas Consumption

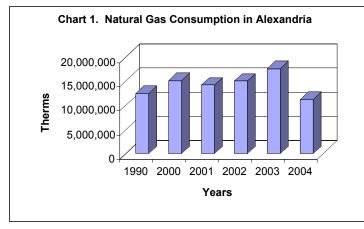
APPEN_6.B Gas Sales to Third Party Suppliers

MWCOG Residential Natural Gas Sales to Third Party Sales Reported by Washington Gas: Years 2001-2004 (in Therms)

Jurisdiction	1990	2000	2001	2002	2003	2004
Alexandria	2,752,832	2,965,091	2,723,182	2,785,596	3,223,893	2,069,787
Arlington	5,184,000	5,730,376	5,133,002	5,321,378	5,799,693	3,666,834
Bowie	N/A	4,191,932	3,877,745	4,004,199	4,305,041	2,734,648
College Park	N/A	983,123	988,632	916,754	11,338,433	732,028
District of Columbia	12,450,370	13,090,795	12,371,871	12,403,047	1,831,758	9,078,155
Falls Church	3,683,549	1,433,979	3,664,572	3,793,927	1,978,902	2,559,837
Fairfax City	3,809,986	5,290,720	5,215,135	5,116,935	37,495,309	3,916,114
Fairfax County	16,450,994	22,071,853	21,444,464	21,215,487	24,045,908	15,968,814
Frederick	N/A	N/A	N/A	N/A	N/A	N/A
Gaithersburg	N/A	3,311,210	3,243,352	3,332,426	3,736,589	2,386,808
Greenbelt	N/A	174,258	179,637	169,454	158,061	140,319
Loudoun County	639,238	3,1231,474	3,608,154	3,789,380	3,500,714	3,077,680
Manassas	57,823	252,730	272,971	306,849	308,033	241,052
Manassas Park City	N/A	88,302	116,785	128,748	128,035	100,435
Montgomery County	N/A	25,627,749	24,921,364	24,692,141	24,565,642	18,210,623
Prince George's County	N/A	19,619,135	19,428,994	19,137,620	18,944,590	14,717,261
Prince William County	2,795,427	32,952,933	3,923,159	4,098,051	22,520,901	3,010,240
Rockville	N/A	11,376,473	11,019,230	11,048,133	11,110,885	7,978,109
Takoma Park	N/A	N/A	N/A	N/A	N/A	N/A

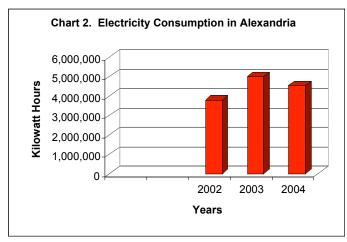
Source: Washington Gas

	Table 6-C MWCOG Electricity Consumption						
	2000-2004						
		(in Kilowa	at Hours)				
Jurisdiction	2000	2001	2002	2003	2004		
Alexandria	N/A	N/A	3,788,811	5,001,776	4,551,851		
Arlington	N/A	N/A	3,650,880	4,797,932	4,177,501		
Bowie	N/A	30,051	312,079	587,033	505,365		
College Park	N/A	903,758	2,945,739	2,882,263	2,706,361		
District of	3,687,000	3,775,000	TBD	TBD	TBD		
Columbia							
Falls Church	N/A	N/A	1,272,575	1,594,749	1,581,303		
Fairfax City	N/A	N/A	3,289,931	2,922,992	2,389,202		
Fairfax	N/A	N/A	20,829,838	22,234,957	20,109,911		
County							
Frederick	1,099,914,858	1,183,075,682	1,206,273,200	1,300,672,200	1,404,613,607		
Gaithersburg	N/A	7,375,342	22,972,359	31,131,978	25,829,764		
Greenbelt	N/A	434,598	1,774,309	1,981,465	1,763,113		
Loudoun	N/A	N/A	4,181,322	3,699,237	3,177,446		
County							
Manassas	166,811,000	170,297,000	174,186,000	180,508,000	186,287,000		
Manassas	N/A	N/A	N/A	N/A	N/A		
Park City							
Montgomery	298,409,697	395,864,323	489,008,643	631,305,934	642,175,303		
County							
Prince	N/A	6,756,052	44,989,090	77,797,565	74,715,422		
George's							
County							
Prince	N/A	N/A	709,255	729,604	737,751		
William							
County							
Rockville	N/A	11,105,840	31,396,312	36,922,395	34,016,019		
Takoma Park	N/A	698,391	1,668,532	1,745,308	1,826,711		
Sources: Domini	Sources: Dominion Virginia Power, Pepco Energy Services and Allegheny Power						

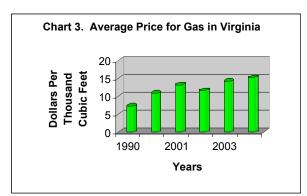

APPEN_6.C MWCOG Electricity Consumption

APPEN_6.D

GAS & ELECTRIC CONSUMPTION/PRICE BY MWCOG JURISDICTION

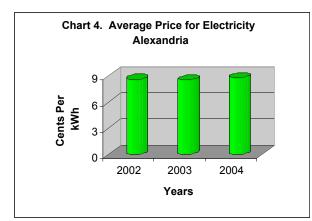

Alexandria
Arlington
Bowie
College Park
District of Columbia
Fairfax City
Fairfax County
Falls Church
Frederick County
Gaithersburg
Greenbelt
Loudoun County
Manassas Park City
Manassas
Montgomery County
Prince George County
Prince William County
Rockville
Takoma Park

ALEXANDRIA - RESIDENTIAL ENERGEY PROFILE

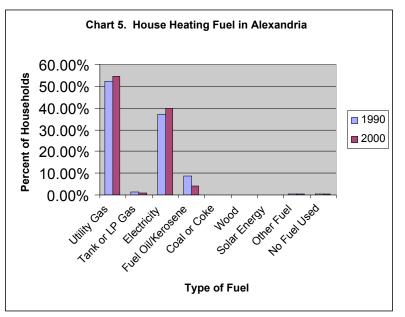


	Therms	
Year	Consumed	Source/Supplier
1990	12,518,054	Washington Gas
2000	15,143,151	Washington Gas
2001	14,229,176	Washington Gas
2002	15,012,307	Washington Gas
2003	17,616,892	Washington Gas
2004	11,261,119	Washington Gas

Source: Washington Gas


Source: Dominion VA Power & PEPCO Energy Services

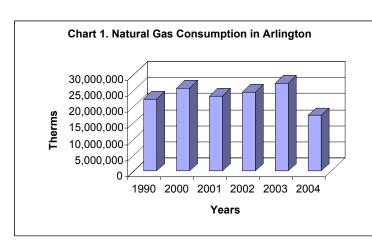
Source: EIA – Virginia Natural Gas Residential Price, 8/30/05


Year	Kilowatt Hours	Source/Supplier
2002	3,788,811	Dominion VA Power & PEPCO
2003	5,001,776	Dominion VA Power & PEPCO
2004	4,551,851	Dominion VA Power & PEPCO

Year	Dollars per Thousand Cubic	
1990		7.31
2000		10.91
2001		13.27
2002		11.65
2003		14.29
2004		15.35

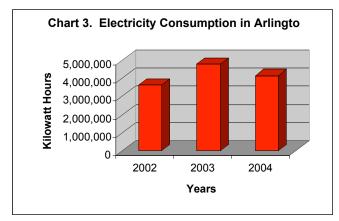
Year	Cents Per kWh
2002	8.62
2003	8.56
2004	8.82

Source: Dominion VA Power

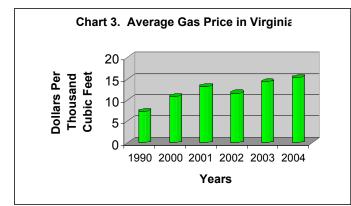


Source: U. S. Census 1990 & 2000

Type of Fuel	1990	2000
Utility Gas	52.20%	54.40%
Tank or LP Gas	1.20%	1.10%
Electricity	36.90%	39.70%
Fuel		
Oil/Kerosene	8.60%	4.00%
Coal or Coke	0.00%	0.00%
Wood	0.10%	0.00%
Solar Energy	0.00%	0.00%
Other Fuel	0.50%	0.40%
No Fuel Used	0.50%	0.50%


Year	Number of Households
1990	53,280
2000	61,889
% Increase	16%

ARLINGTON - RESIDENTIAL ENERGEY PROFILE

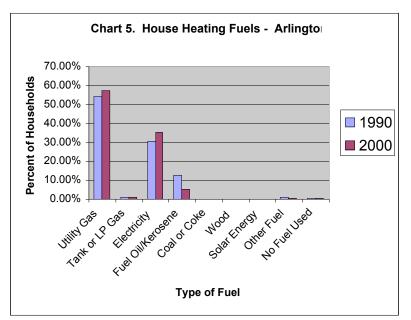

Year	Therms Consumed	Source/Supplier
1990	22,497,929	Washington Gas
2000	25,861,171	Washington Gas
2001	23,389,363	Washington Gas
2002	24,654,751	Washington Gas
2003	27,277,170	Washington Gas
2004	17,322,835	Washington Gas

Source: Washington Gas



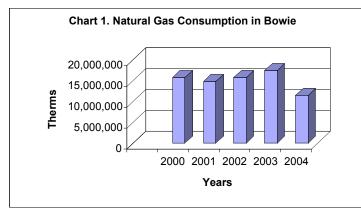
Source: Dominion VA Power & PEPCO Energy Services

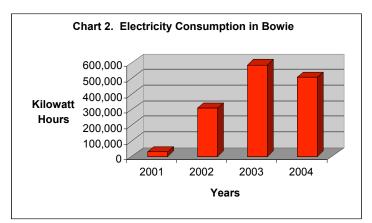
	Kilowatt	
Year	Hours	Source/Supplier
2002	3,650,880	Dominion VA Power & PEPCO
2003	4,797,932	Dominion VA Power & PEPCO
2004	4,177,501	Dominion VA Power & PEPCO


Source: EIA – Virginia Natural Gas Residential Prices, 8/30/05

Year	Dollars per Thousand	
	Cubic	
1990		7.31
2000	1	0.91
2001	1	3.27
2002	1	1.65
2003	1	4.29
2004	1	5.35

Year	Cents per kWh
2002	8.53
2003	8.47
2004	8.74


Source: Dominion Virginia Power

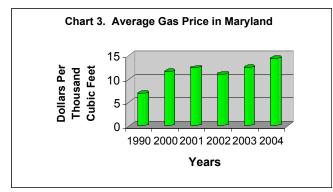

Year	Number of Households
1990	78,520
2000	86,350
% Increase	10%

Source: U. S. Census 1990 & 2000

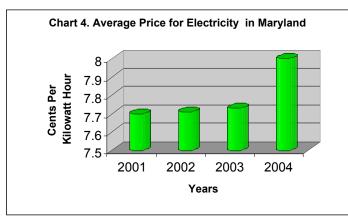
BOWIE - RESIDENTIAL ENERGEY PROFILE

Source: Washington Gas

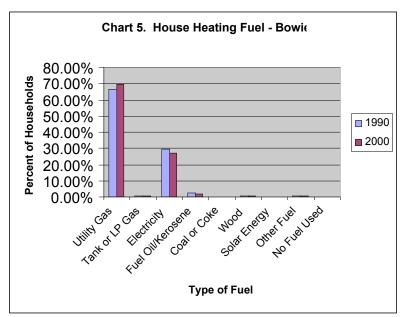
	Therms	
Year	Consumed	Source/Supplier
2000	15,850,986	Washington Gas
2001	14,870,430	Washington Gas
2002	15,848,690	Washington Gas
2003	17,622,868	Washington Gas
2004	11,628,231	Washington Gas


Years	kWh Consumed	Source/Supplier
2001	30,051	PEPCO
2002	312,079	PEPCO
2003	587,033	PEPCO
2004	505,365	PEPCO

Source: PEPCO Energy Services

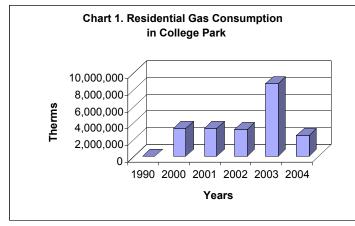

Note: The 2001 electricity consumption number is believed to be an aberration in the data provided.

Utility Gas	54.30%	57.50%
Tank or LP Gas	1.10%	1.00%
Electricity	30.50%	35.10%
Fuel Oil/Kerosene	12.60%	5.10%
Coal or Coke	0.00%	0.00%
Wood	0.10%	0.10%
Solar Energy	0.00%	0.00%
Other Fuel	0.80%	0.70%
No Fuel Used	0.60%	0.40%


Years	Dollars Per Cubic Feet
1990	6.92
2000	11.66
2001	12.42
2002	11.04
2003	12.49
2004	14.38

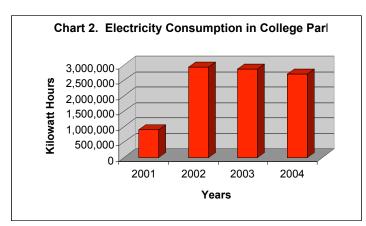
Source: Maryland Natural Gas Residential Price, 8/30/05

Source: EIA – Maryland Electricity Residential Price, 8/30/05



Source:	U. S	. Census	1990 & 2000
000.00.	0.0		1000 0 2000

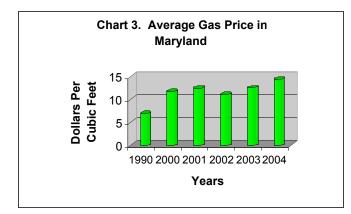
Year	Cents Per kWh
2001	7.7
2002	7.71
2003	7.73
2004	8.00

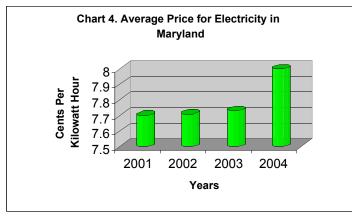

Year	Number of Households
1990	12,891
2000	18,102
% Increase	40%

COLLEGE PARK - RESIDENTIAL ENERGEY PROFILE

Year	Therms Consumed	Source/Supplier
1990	N/A	Washington Gas
2000	3,411,289	Washington Gas
2001	3,416,658	Washington Gas
2002	3,224,658	Washington Gas
2003	8,778,097	Washington Gas
2004	2,544,573	Washington Gas

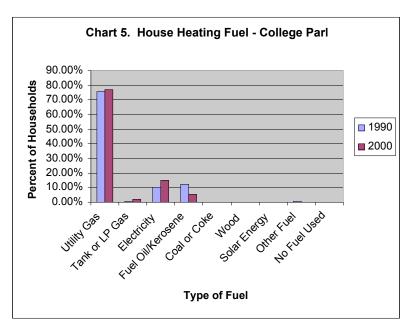
Source: Washington Gas



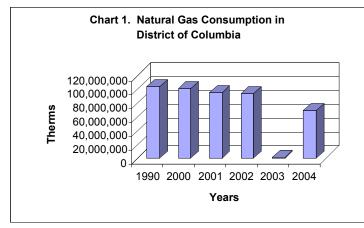

Years	kWh Consumed	Source/Supplier
2001	903,758	PEPCO
2002	2,945,739	PEPCO
2003	2,882,263	PEPCO
2004	2,706,361	PEPCO

Source: PEPCO Energy Services

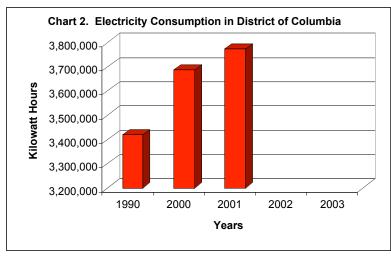
Type of Fuel	1990	2000
Utility Gas	66.60%	69.80%
Tank or LP Gas	0.40%	0.60%
Electricity	29.80%	27.00%
Fuel		
Oil/Kerosene	2.30%	2.00%
Coal or Coke	0.00%	0.00%
Wood	0.60%	0.40%
Solar Energy	0.10%	0.00%
Other Fuel	0.70%	0.70%
No Fuel Used	0.00%	0.10%


Years	Dollars Per Cubic Feet
1990	6.92
2000	11.66
2001	12.42
2002	11.04
2003	12.49
2004	14.38

Year	Cents Per kWh
2001	7.7
2002	7.71
2003	7.73
2004	8.00


Source: EIA – Maryland Electricity Residential Price, 8/30/05

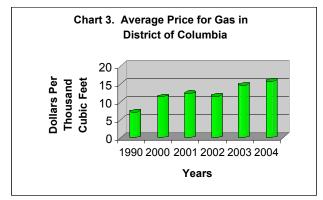
Year	Number of Households
1990	5,740
2000	6,046
% Increase	5%


Source: U. S. Census 1990 & 2000

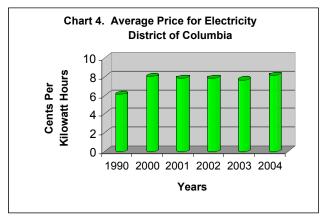
DISTRICT OF COLUMBIA - RESIDENTIAL ENERGEY PROFILE

Year	Therms Consumed	Source/Supplier
1990	104,011,435	Washington Gas
2000	100,969,445	Washington Gas
2001	95,210,402	Washington Gas
2002	94,161,986	Washington Gas
2003	1,441,753	Washington Gas
2004	69,592,559	Washington Gas

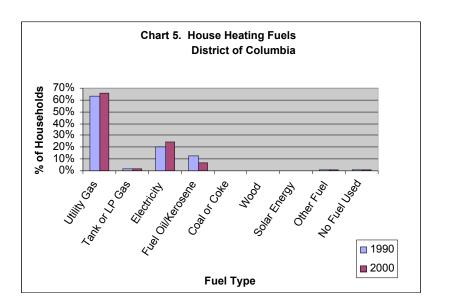
Source: Washington Gas



Year	kWh Consumed	Source/Supplier
1990	3,419,000	EIA
2000	3,687,000	EIA
2001	3,775,000	EIA
2002		EIA
2003		EIA
2004		EIA

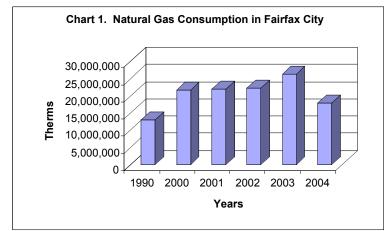

Source: EIA, Residential Sector Energy Consumption Estimates, 1960-2001

NOTE:


The number for 2003 is believed to be an aberration; Washington Gas is investigating. Also, at the writing of the report, the electricity consumption for the District of Columbia was not available from PEPCO Energy Services. Consequently, the EIA consumption numbers were used since the numbers do not have to be disaggregated.

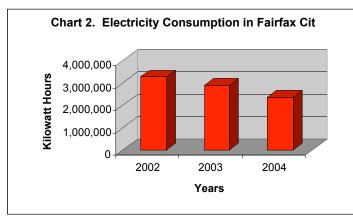
Source: EIA – District of Columbia Residential Electricity Price, 8/30/05

EIA – District of Columbia Electricity Residential Price, 8/30/05


Year	Ave. Price Per Thousand Cubic Feet
1990	7.17
2000	11.4
2001	12.27
2002	11.54
2003	14.66
2004	15.76

Year	Av. Cents Per kWh
1990	6.1
2000	8.03
2001	7.83
2002	7.82
2003	7.66
2004	8.14

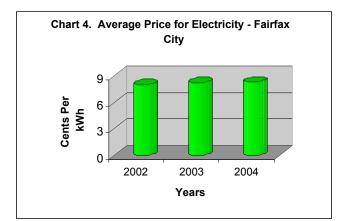
Type of Fuel	1990	2000
Utility Gas	63.50%	65.40%
Tank or LP Gas	2.00%	1.80%
Electricity	20.50%	24.20%
Fuel		
Oil/Kerosene	12.50%	6.90%
Coal or Coke	0.00%	0.00%
Wood	0.00%	0.00%
Solar Energy	0.10%	0.00%
Other Fuel	0.60%	0.70%
No Fuel Used	0.80%	1.00%


Year	Number of Households
1990	249,634
2000	248,338
% Decrease	(0.5%)

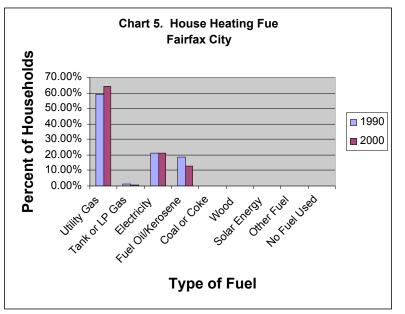
FAIRFAX CITY – RESIDENTIAL ENERGY PROFILE

Year	Therms Consumed	Source/Supplier
1990	12,954,305	Washington Gas
2000	21,587,925	Washington Gas
2001	21,818,051	Washington Gas
2002	22,109,064	Washington Gas
2003	26,185,889	Washington Gas
2004	17,833,029	Washington Gas

Source: Washington Gas


Source: Dominion VA Power & PEPCO Energy Services

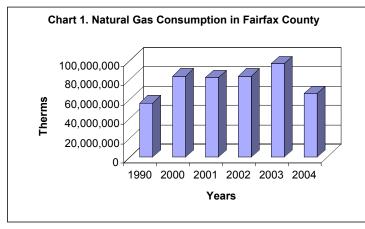
Source: EIA – Virginia Natural Gas Residential Price, 8/30/05


Year	Kilowatt Hours	Source/Supplier
2002	3,289,931	DomInion VA Power & PEPCO
2003	2,922,992	Dominion VA Power & PEPCO
2004	2,389,202	Dominion VA Power & PEPCO

Year	Dollars per Thousand Cubic	
1990		7.31
2000		10.91
2001		13.27
2002		11.65
2003		14.29
2004		15.35

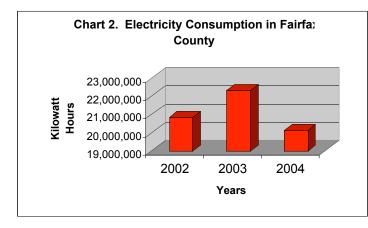
Year	Cents per kWh
2002	8.53
2003	8.47
2004	8.74

Source: EIA – Dominion VA Power



Year	Number of Households
1990	7,362
2000	8,035
% Increase	9%

Source: U. S. Census 1990 & 2000


Type of Fuel	1990	2000
Utility Gas	58.80%	64.30%
Tank or LP Gas	1.20%	0.90%
Electricity	21.00%	21.30%
Fuel		
Oil/Kerosene	18.70%	12.90%
Coal or Coke	0.00%	0.00%
Wood	0.30%	0.10%
Solar Energy	0.00%	0.00%
Other Fuel	0.10%	0.20%
No Fuel Used	0.00%	0.20%

FAIRFAX COUNTY - RESIDENTIAL ENERGY PROFILE

	Therms	
Year	Consumed	Source/Supplier
1990	56,032,056	Washington Gas
2000	84,126,795	Washington Gas
2001	82,541,397	Washington Gas
2002	83,710,888	Washington Gas
2003	96,779,184	Washington Gas
2004	65,886,376	Washington Gas

Source: Washington Gas

Year	Kilowatt Hours	Source/Supplier
2002	20,829,838	Dominion VA Power & PEPCO
2003	22,324,957	Dominion VA Power & PEPCO
2004	20,109,911	Dominion VA Power & PEPCO

Source: Dominion VA Power & PEPCO Energy Services

NOTE:

Fairfax County gas consumption does not include numbers from Columbia Gas of Virginia (numbers could not be disaggregated). Neither are the numbers from NOVEC included (due to their fee to provide).

Cubic

Dollars per Thousand

7.31

10.91

13.27

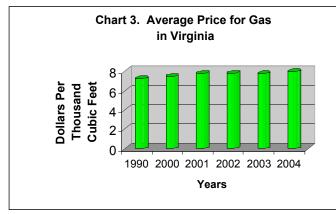
11.65

14.29 15.35

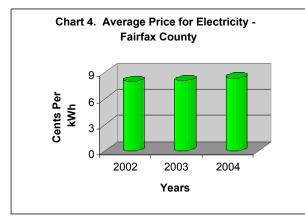
Year

1990

2000

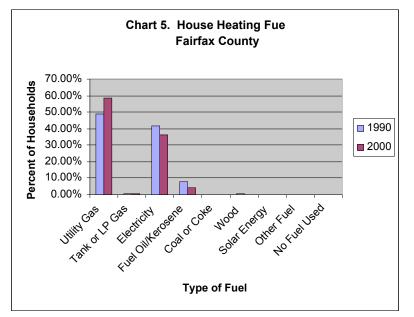

2001

2002


2003

2004

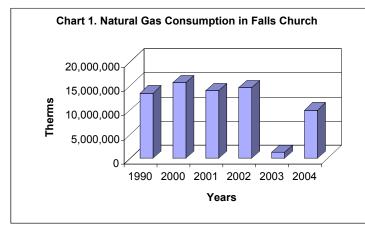
2004



Source: EIA – Virginia Natural Gas Residential Price, 8/30/05

	Questo and Date
Year	Cents per kWh
2002	

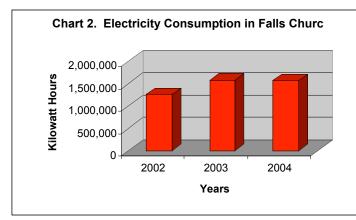
Source: Dominion VA Power

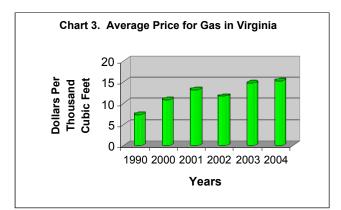

Type of Fuel	1990	2000
Utility Gas	49.10%	58.50%
Tank or LP Gas	0.90%	0.90%
Electricity	41.60%	36.10%
Fuel		
Oil/Kerosene	7.80%	4.20%
Coal or Coke	0.00%	0.00%
Wood	0.40%	0.10%
Solar Energy	0.00%	0.00%
Other Fuel	0.10%	0.10%
No Fuel Used	0.10%	0.10%

8.39

Year	Number of Households
1990	292,345
2000	350,714
% Increase	20%

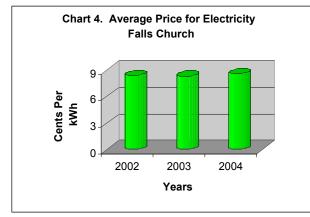
Source: U. S. Census 1990 & 2000

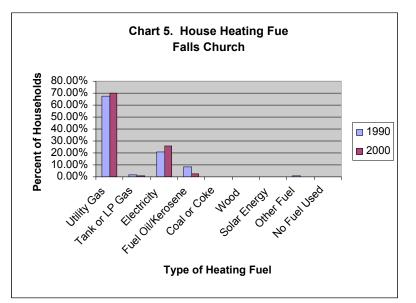

FALLS CHURCH – RESIDENTIAL ENERGY PROFILE


Year	Therms Consumed	Source/Supplier
1990	13,511,941	Washington Gas
2000	15,665,023	Washington Gas
2001	14,053,282	Washington Gas
2002	14,645,070	Washington Gas
2003	1,277,910	Washington Gas
2004	10,039,885	Washington Gas

Source: Washington Gas

NOTE: The 2003 gas consumption number is believed to be an aberration.

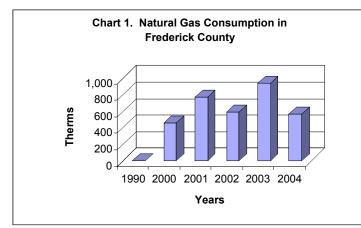

Source: Dominion VA Power & PEPCO Energy Services


Source: EIA – Virginia Natural Gas Residential Price, 8/30/05

Year	Kilowatt Hours	Source/Supplier
2002	1,272,575	Dominion VA Power & PEPCO
2003	1,594,749	Dominion VA Power & PEPCO
2004	1,581,303	Dominion VA Power & PEPCO

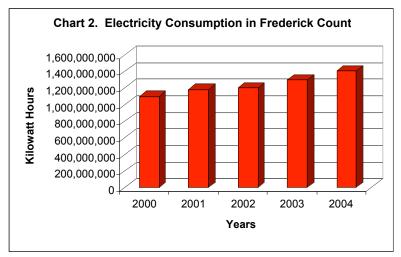
Year	Dollars per Thousand Cubic	
1990		7.31
2000		10.91
2001		13.27
2002		11.65
2003		14.29
2004		15.35

Source: Dominion VA Power


Source: U. S. Census 1990 & 2000

Type of Fuel	1990	2000
Utility Gas	67.68%	69.90%
Tank or LP Gas	1.45%	1.19%
Electricity	20.95%	26.00%
Fuel		
Oil/Kerosene	8.75%	2.49%
Coal or Coke	0.00%	0.00%
Wood	0.36%	0.10%
Solar Energy	0.00%	0.00%
Other Fuel	0.81%	0.40%
No Fuel Used	0.00%	0.30%

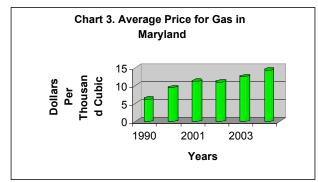
Year	Cents per kWh
2002	8.41
2003	8.33
2004	8.62


Year	Number of Households
1990	4,195
2000	4,471
% Increase	7%

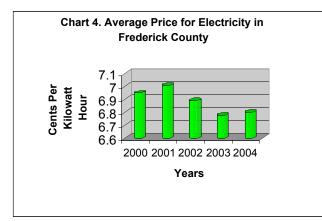
FREDERICK COUNTY – RESIDENTIAL ENERGY PROFILE

	Therms	
Year	Consumed	Source/Supplier
1990	N/A	Washington Gas
2000	456	Washington Gas
2001	771	Washington Gas
2002	591	Washington Gas
2003	937	Washington Gas
2004	570	Washington Gas

Source: Washington Gas

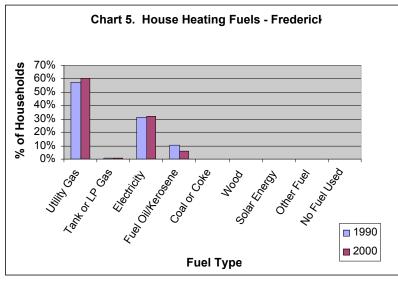


Year	kWh Consumed	Source/Supplier
2000	1,099,914,858	Allegheny Power
2001	1,183,075,682	Allegheny Power
2002	1,206,273,200	Allegheny Power
2003	1,300,672,200	Allegheny Power
2004	1,404,613,607	Allegheny Power


Source: Allegheny Power

NOTE:

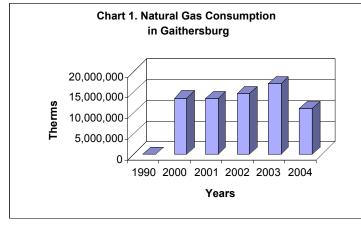
The number reported by Allegheny County for Frederick County is significantly higher than counties that have five times the population of this county. Allegheny Power verified the number was accurate but does include apartment buildings with individually metered consumption. Typically, apartment buildings are included under the Commercial Sector.


Source: Maryland Natural Gas Residential Price, 8/30/05

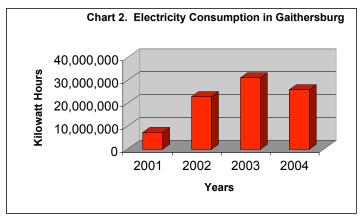
Years	Dollars Per Cubic Feet
1990	6.92
2000	11.66
2001	12.42
2002	11.04
2003	12.49
2004	14.38

Year	Av. Cents Per kWk
2000	6.95
2001	7.01
2002	6.89
2003	6.78
2004	6.8

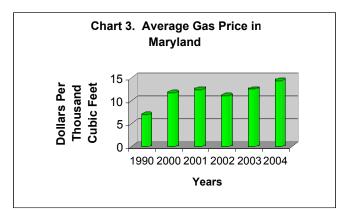
Source: Allegheny Power



Year	Number of Households
1990	52,570
2000	70,060
% Increase	33%

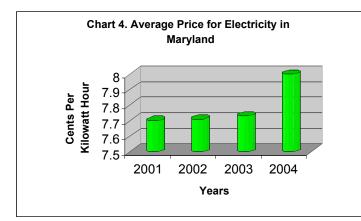

U.S. Census 1990 & 2000

Type of Fuel	1990	2000
Utility Gas	57.20%	60.40%
Tank or LP Gas	0.90%	0.90%
Electricity	31.10%	31.70%
Fuel		
Oil/Kerosene	10.20%	6.30%
Coal or Coke	0.00%	0.00%
Wood	0.30%	0.10%
Solar Energy	0.00%	0.00%
Other Fuel	0.20%	0.20%
No Fuel Used	0.10%	0.20%


GAITHERSBURG – RESIDENTIAL ENERGY PROFILE

Source: Washington Gas

Source: PEPCO Energy Services



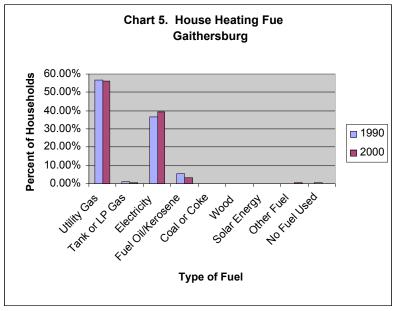
Source: Maryland Natural Gas Residential Price, 8/30/05

	Therms	
Year	Consumed	Source/Supplier
1990	N/A	Washington Gas
2000	13,608,166	Washington Gas
2001	13,554,099	Washington Gas
2002	14,635,796	Washington Gas
2003	17,039,196	Washington Gas
2004	11,000,956	Washington Gas

Year	kWh Consumed	Source/Supplier
2001	7,375,342	PEPCO
2002	22,972,359	PEPCO
2003	31,131,978	PEPCO
2004	25,829,764	PEPCO

Years	Dollars Per Cubic Feet
1990	6.92
2000	11.66
2001	12.42
2002	11.04
2003	12.49
2004	14.38

 Year
 Cents Per kWh

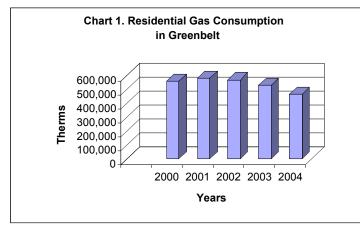

 2001
 7.7

 2002
 7.71

 2003
 7.73

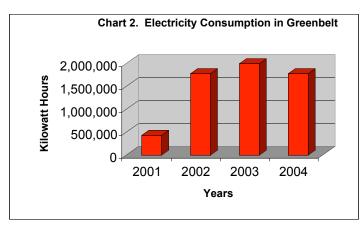
 2004
 8.00

Source: EIA – Maryland Electricity Residential Price, 8/30/05

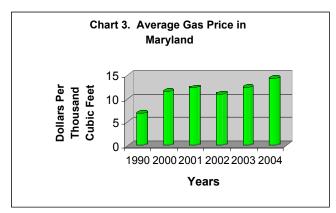

Year	Number of Households
1990	15,202
2000	19,501
% Increase	28%

Source: U.S. Census 1990 & 2000

Type of Fuel	1990	2000
Utility Gas	56.60%	56.30%
Tank or LP Gas	1.10%	0.80%
Electricity	36.50%	39.20%
Fuel Oil/Kerosene	5.40%	3.30%
Coal or Coke	0.00%	0.00%
Wood	0.10%	0.00%
Solar Energy	0.00%	0.00%
Other Fuel	0.00%	0.30%
No Fuel Used	0.30%	0.20%


Note: The Gaithersburg Chamber of Commerce was planning to start an Electricity Purchasing Cooperative by May 2005. Project is currently on hold due to staff transitions.

GREENBELT - RESIDENTIAL ENERGEY PROFILE



Therms Year Consumed Source/Supplier 564,764 2000 Washington Gas 2001 585,001 Washington Gas 2002 573,477 Washington Gas 2003 533,184 Washington Gas Washington Gas 469,661 2004

Source: Washington Gas

Source: PEPCO Energy Services

Source: EIA - Maryland Natural Gas Residential Price, 8/30/05

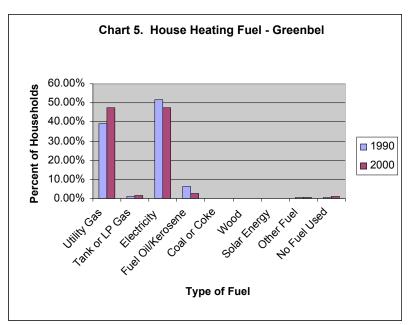
Year	Kilowatt Hours	Source/Supplier
2001	434,598	PEPCO
2002	1,774,309	PEPCO
2003	1,981,465	PEPCO
2004	1,763,113	PEPCO

Years	Dollars Per Cubic Feet
1990	6.92
2000	11.66
2001	12.42
2002	11.04
2003	12.49
2004	14.38

Powered by Energy Efficiency-Fueled by Energy Conservation MWCOG Energy Strategic Plan

 Year
 Cents per kWh

 2000
 7.95

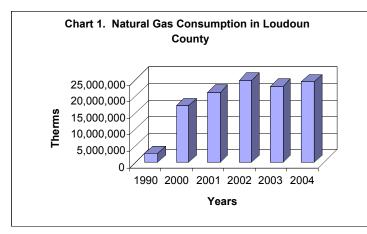

 2001
 7.70

 2002
 7.71

 2003
 7.73

 2004
 8.00

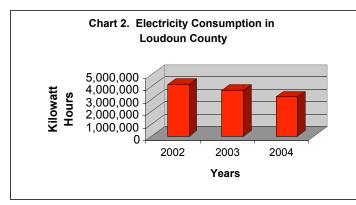
Source: EIA – Maryland Electricity Residential Price, 8/30/05

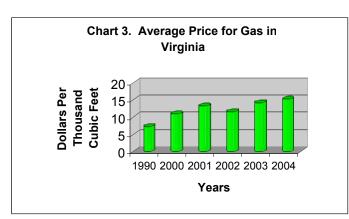


Year	Number of Households
1990	9,347
2000	9,342
% Increase	0%

Source: U. S. Census 1990 & 2000

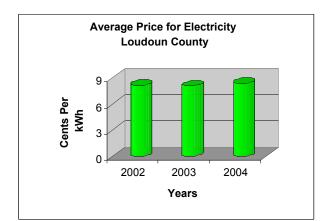
Type of Fuel	1990	2000
Utility Gas	52.20%	54.40%
Tank or LP Gas	1.20%	1.10%
Electricity	36.90%	39.70%
Fuel		
Oil/Kerosene	8.60%	4.00%
Coal or Coke	0.00%	0.00%
Wood	0.10%	0.00%
Solar Energy	0.00%	0.00%
Other Fuel	0.50%	0.40%
No Fuel Used	0.50%	0.50%


LOUDOUN COUNTY – RESIDENTIAL ENERGY PROFILE

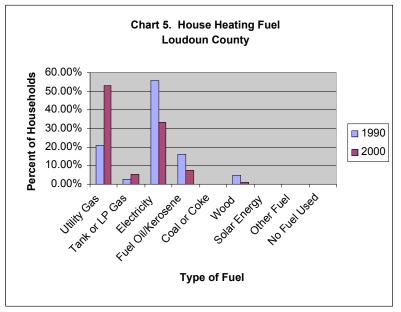

	Therms	
Year	Consumed	Source/Supplier
1990	2,655,949	Washington Gas
2000	17,251,916	Washington Gas
2001	21,266,658	Washington Gas
2002	24,876,740	Washington Gas
2003	23,064,248	Washington Gas
2004	24,333,477	Washington Gas

Source: Washington Gas

Note: Loudoun County gas consumption does not include numbers from Columbia Gas of Virginia; their consumption numbers could not be disaggregated. Also missing are numbers from NOVEC (due to their fee to provide numbers).


Source: Dominion VA Power and PEPCO Energy Services

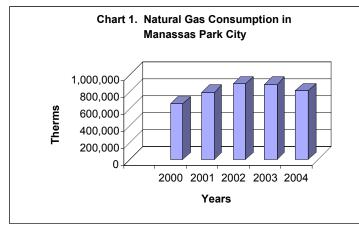
Source: EIA - Maryland Natural Gas Residential Price, 4/30/05


	Kilowatt	
Year	Hours	Source/Supplier
2002	4,181,322	Dominion VA Power & PEPCO
2003	3,699,237	Dominion VA Power & PEPCO
2004	3,177,446	Dominion VA Power & PEPCO

Year	Dollars per Thousand Cubic Feet	
1990		7.31
2000		10.91
2001		13.27
2002		11.65
2003		14.29
2004		15.35

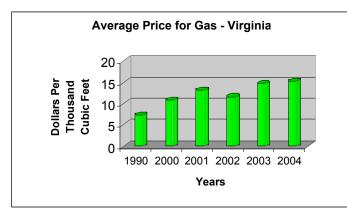
Year	Cents per kWh	Source/ Suppliers
2002	8.16	Dominion VA Power
2003	8.08	Dominion VA Power
2004	8.38	Dominion VA Power

Source: Dominion VA Power



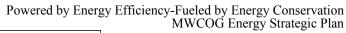
Year	Number of Households
1990	30,490
2000	59,900
% Increase	97%

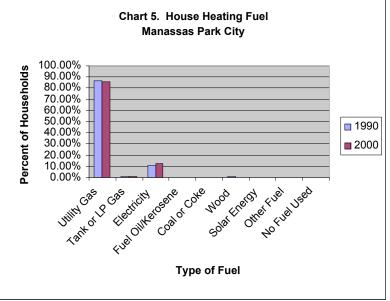
Source: U.S. Census 1990 and 2000


Type of Fuel	1990	2000
Utility Gas	20.90%	52.90%
Tank or LP Gas	2.50%	5.40%
Electricity	55.50%	33.00%
Fuel		
Oil/Kerosene	16.30%	7.30%
Coal or Coke	0.00%	0.00%
Wood	4.60%	1.20%
Solar Energy	0.10%	0.00%
Other Fuel	0.10%	0.20%
No Fuel Used	0.00%	0.10%

MANASSAS PARK CITY – RESIDENTIAL ENERGY PROFILE

	Therms	
Year	Consumed	Source/Supplier
2000	654,438	Washington Gas
2001	793,983	Washington Gas
2002	892,743	Washington Gas
2003	888,188	Washington Gas
2004	815,400	Washington Gas

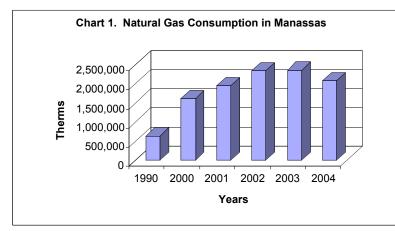

Source: Washington Gas



Source: EIA - Virginia Natural Gas Residential Price, 8/30/05

Year	Dollars per Thousand Cubic Feet	
1990		7.31
2000		10.91
2001		13.27
2002		11.65
2003		14.29
2004		15.35

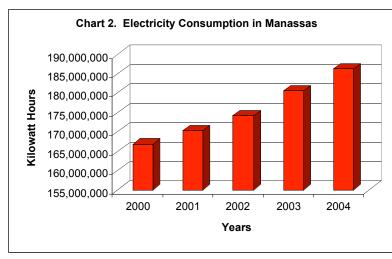
Note: The gas consumption numbers from Columbia Gas of Virginia are not included because company's numbers could not be disaggregated. The electricity consumption information from NOVEC is not included due to the firm's fee to provide the numbers.



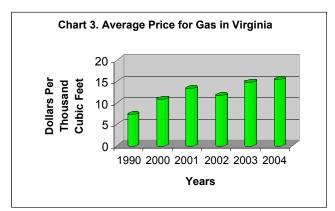
Year	Number of Households
1990	2,184
2000	3,254
% Increase	49%

Source: U.S. Census 1990 and 2000

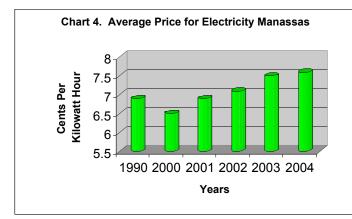
Type of Fuel	1990	2000
Utility Gas	86.89%	85.90%
Tank or LP Gas	0.92%	1.30%
Electricity	10.72%	12.30%
Fuel		
Oil/Kerosene	0.37%	0.10%
Coal or Coke	0.00%	0.00%
Wood	0.78%	0.40%
Solar Energy	0.00%	0.00%
Other Fuel	0.00%	0.00%
No Fuel Used	0.32%	0.00%


MANASSAS - RESIDENTIAL ENERGY PROFILE

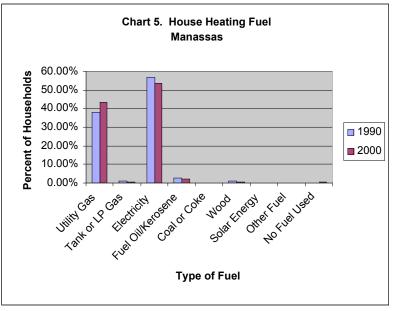
	Year	Therms Consumed	Source/Supplier
	1990	636,238	Washington Gas
ſ	2000	1,620,300	Washington Gas
	2001	1,945,250	Washington Gas
	2002	2,353,191	Washington Gas
	2003	2,359,523	Washington Gas
	2004	2,075,562	Washington Gas


Source: Washington Gas

Note: Manassas gas consumption numbers do not include numbers from Columbia Gas of Virginia; their numbers could not be disaggregated.


Year MWH Source/Supplier 2000 166,811,000 Manassas Utilities 2001 170,297,000 Manassas Utilities 2002 174,186,000 Manassas Utilities 2003 180,508,000 Manassas Utilities 2004 186,287,000 Manassas Utilities

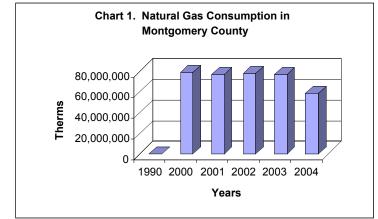
Source: Manassas Utilities


Source: Virginia Natural Gas Residential Price, 8/30/05

Year	Dollars per Thousand Cubic Feet	
1990		7.31
2000		10.91
2001		13.27
2002		11.65
2003		14.29
2004		15.35

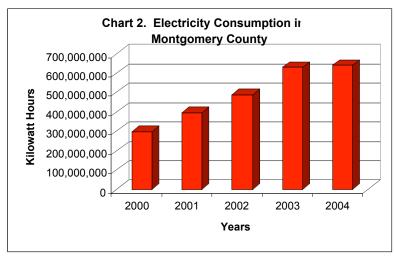
Year	Av. Cents Per kWh	Source/Supplier
1990	6.9	Manassas Utilities
2000	6.5	Manassas Utilities
2001	6.9	Manassas Utilities
2002	7.1	Manassas Utilities
2003	7.5	Manassas Utilities
2004	7.6	Manassas Utilities

Source: Manassas Utilities



1	Year	Number of Households
	1990	9,481
	2000	11,757
	% Increase	7%

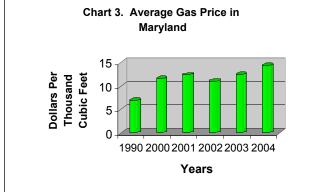
Source: U. S. Census 1990 and 2000


Type of Fuel	1990	2000
Utility Gas	37.98%	43.40%
Tank or LP Gas	1.28%	0.60%
Electricity	56.59%	53.40%
Fuel Oil/Kerosene	2.88%	1.90%
Coal or Coke	0.00%	0.00%
Wood	1.24%	0.40%
Solar Energy	0.00%	0.00%
Other Fuel	0.05%	0.00%
No Fuel Used	0.00%	0.30%

MONTGOMERY COUNTY - RESIDENTIAL ENERGY PROFILE

Year	Therms Consumed	Source/Supplier
1990	2,734	Washington Gas
2000	78,916,441	Washington Gas
2001	77,102,918	Washington Gas
2002	77,889,696	Washington Gas
2003	77,439,787	Washington Gas
2004	58,970,896	Washington Gas

Source: Washington Gas

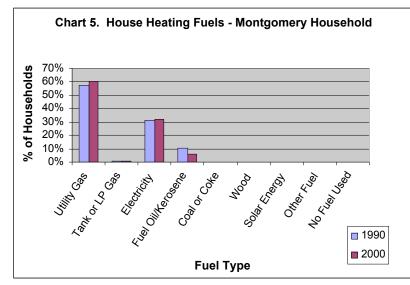


Year	Kwh Consumed	Source/Supplier
2000	298,409,697	Allegheny Power
2001	395,864,323	Allegheny Power & PEPCO
2002	489,008,643	Allegheny Power & PEPCO
2003	631,305,934	Allegheny Power & PEPCO
2004	642,175,303	Allegheny Power & PEPCO


Source: Dominion VA Power & PEPCO Energy Services

Consumption #s Provided by Montgomery County (Taken from Energy Tax Records)		
Years	Electricity in kWh	Natural Gas in Therms
2002	4,412,776,817	148,798,901
2003	4,932,616,301	270,127,631
2004	4,679,966,359	220,562,267

Montgomery County's numbers are significantly higher for electricity and gas than Allegheny, Pepco and Washington Gas. Montgomery's numbers included apartments that are typically included under the Commercial Sector or there is an error by one or more of the reporting utility companies.



Source: EIA – Maryland Natural Gas Residential Price, 8/30/05

Year	Av. Cents Per kWh	Source/Supplier
2000	7.01	Allegheny Power
2001	7.13	Allegheny Power
2002	7	Allegheny Power
2003	9.98	Allegheny Power
2004	7.2	Allegheny Power

Source: Allegheny Power

Year	Number of Households
1990	282,228
2000	324,565
% Increase	15%

Type of Fuel	1990	2000
Utility Gas	57.20%	60.40%
Tank or LP Gas	0.90%	0.90%
Electricity	31.10%	31.70%
Fuel		
Oil/Kerosene	10.20%	6.30%
Coal or Coke	0.00%	0.00%
Wood	0.30%	0.10%
Solar Energy	0.00%	0.00%
Other Fuel	0.20%	0.20%
No Fuel Used	0.10%	0.20%

Dollars Per Cubic Feet

6.92

11.66

12.42

11.04

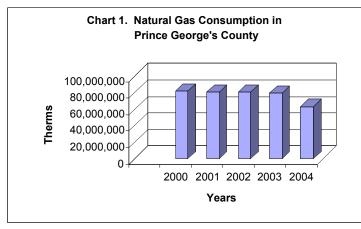
12.49

14.38

Years

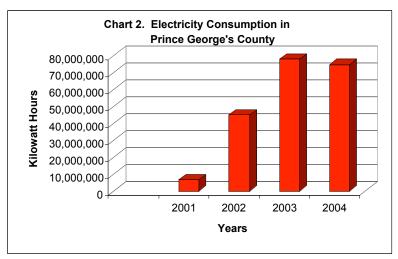
1990

2000

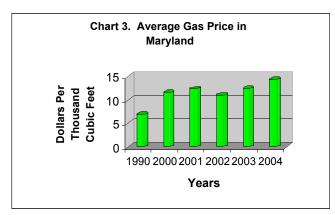

2001

2002

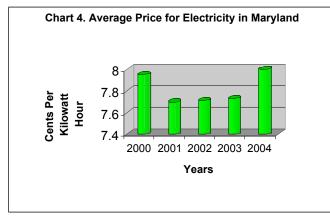
2003


2004

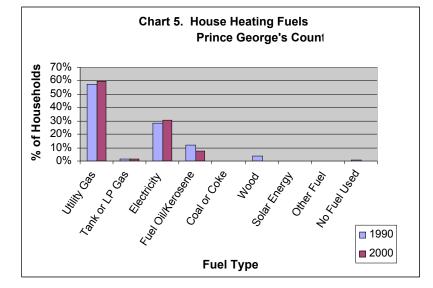
PRINCE GEORGE'S COUNTY - RESIDENTIAL ENERGY PROFILE


Year	Therms Consumed	Source/Supplier
2000	81,636,706	Washington Gas
2001	80,647,138	Washington Gas
2002	80,544,297	Washington Gas
2003	79,812,732	Washington Gas
2004	63,238,664	Washington Gas

Source: Washington Gas

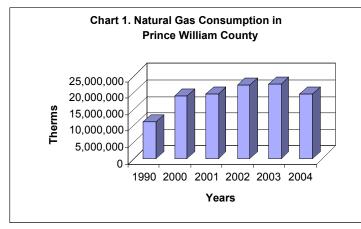

	Kilowatt	
Year	Hours	Source/Supplier
2001	6,756,052	PEPCO
2002	44,989,090	PEPCO
2003	77,797,565	PEPCO
2004	74,715,422	PEPCO

Source: PEPCO Energy Services

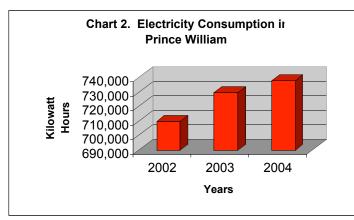

Source: EIA – Maryland Natural Gas Residential Price, 8/30/05

Years	Dollars Per Cubic Feet
1990	6.92
2000	11.66
2001	12.42
2002	11.04
2003	12.49
2004	14.38

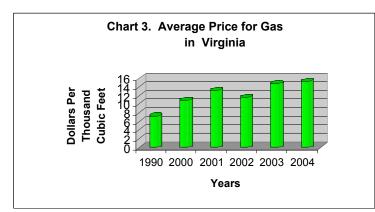
Source: Maryland Electricity Residential Price, 8/30/05


Year	Cents per kWh
2000	7.95
2001	7.70
2002	7.71
2003	7.73
2004	8.00

Year	Number of Households
1990	258,011
2000	286,610
% Increase	11%


Type of Fuel	1990	2000
Utility Gas	57.70%	59.70%
Tank or LP Gas	1.20%	1.20%
Electricity	28.00%	30.90%
Fuel		
Oil/Kerosene	11.70%	7.40%
Coal or Coke	0.00%	0.00%
Wood	4.00%	0.20%
Solar Energy	0.00%	0.00%
Other Fuel	0.30%	0.30%
No Fuel Used	0.60%	0.30%

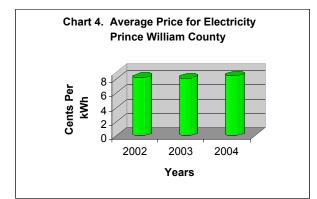
PRINCE WILLIAM COUNTY - RESIDENTIAL ENERGY PROFILE



	Therms	
Year	Consumed	Source/Supplier
1990	11,098,759	Washington Gas
2000	19,009,396	Washington Gas
2001	19,595,512	Washington Gas
2002	22,281,084	Washington Gas
2003	22,520,901	Washington Gas
2004	19,652,384	Washington Gas

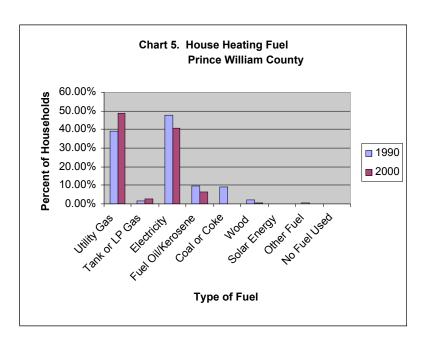
Source: Washington Gas

Source: Dominion VA Power & PEPCO Energy Services



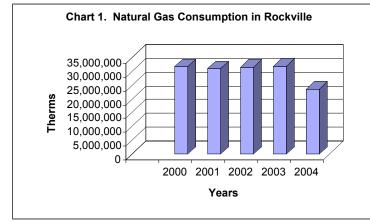
Year	Kilowatt Hours	Source/Supplier
2002	709,255	Dominion VA Power & PEPCO
2003	729,604	Dominion VA Power & PEPCO
2004	737,751	Dominion VA Power & PEPCO

Year	Dollars per Thousand Cubic Feet	
1990		7.31
2000		10.91
2001		13.27
2002		11.65
2003		14.29
2004		15.35

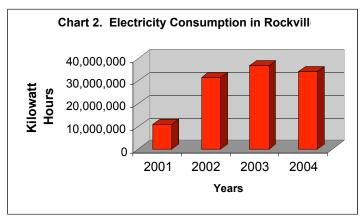

Source: Virginia Natural Gas Residential Price, 8/30/05

Note: Prince William County gas and electric consumption numbers do not include those from Columbia Gas of Virginia since their numbers could not be disaggregated and NOVEC (fee to provide numbers).

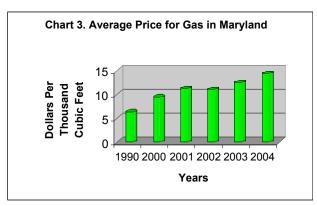
Year	Cents per kWh	Source/ Suppliers
2002	8.22	Dominion VA Power
2003	8.14	Dominion VA Power
2004	8.44	Dominion VA Power


Source: Dominion VA Power

Year	Number of Households	
1990	69,709	
2000	94,570	
% Increase	36%	

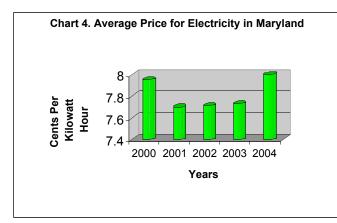

Type of Fuel	1990	2000
Utility Gas	38.90%	48.90%
Tank or LP Gas	1.50%	2.60%
Electricity	47.50%	40.70%
Fuel		
Oil/Kerosene	9.40%	6.60%
Coal or Coke	9.10%	0.00%
Wood	2.00%	0.80%
Solar Energy	0.10%	0.00%
Other Fuel	0.30%	0.20%
No Fuel Used	0.10%	0.10%

ROCKVILLE - RESIDENTIAL ENERGY PROFILE



	Therms	
Year	Consumed	Source/Supplier
2000	31,807,018	Washington Gas
2001	30,950,701	Washington Gas
2002	31,641,949	Washington Gas
2003	31,847,850	Washington Gas
2004	23,721,354	Washington Gas

Source: Washington Gas


Source: PEPCO Energy Services	Source:	PEPCO Energy Services
-------------------------------	---------	-----------------------

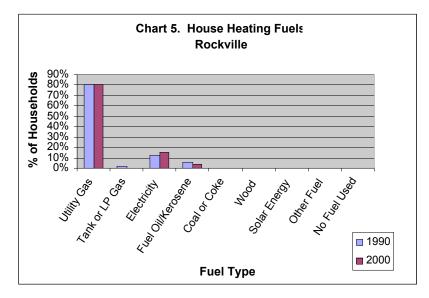
Source: EIA – Maryland Natural Gas Residential Price, 8/30/05

Year	Kilowatt Hours	Source/Supplier
2001	11,105,840	PEPCO
2002	31,396,312	PEPCO
2003	36,922,395	PEPCO
2004	34,016,019	PEPCO

Years	Dollars Per Cubic Feet
1990	6.92
2000	11.66
2001	12.42
2002	11.04
2003	12.49
2004	14.38

 Year
 Cents per kWh

 2000
 7.95

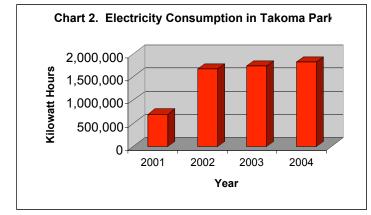

 2001
 7.70

 2002
 7.71

 2003
 7.73

 2004
 8.00

Source: Maryland Electricity Residential Price, 8/30/05

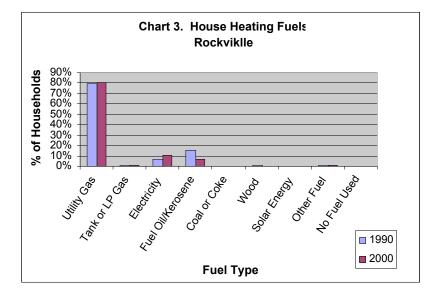


Year	Number of Households	
1990	15,660	
2000	17,245	
% Increase	10%	

Source: U. S. Census 1990 and 2000

Type of Fuel	1990	2000
Utility Gas	80.70%	80.10%
Tank or LP Gas	1.60%	0.40%
Electricity	12.20%	15.20%
Fuel Oil/Kerosene	5.30%	4.00%
Coal or Coke	0.00%	0.00%
Wood	0.20%	0.00%
Solar Energy	0.00%	0.00%
Other Fuel	0.10%	0.10%
No Fuel Used	0.00%	0.10%

TAKOMA PARK - RESIDENTIAL ENERGY PROFILE


Year	Cents per kWh	Source/ Suppliers
2001	698,391	PEPCO
2002	1,668,532	PEPCO
2003	1,745,308	PEPCO
2004	1,826,711	PEPCO

Source: EIA - Maryland Electricity Residential Price, 8/30/05

Note: Gas consumption information was not available for Takoma Park.

Year	Cents per kWh
2000	7.95
2001	7.70
2002	7.71
2003	7.73
2004	8.00

Type of Fuel	1990	2000
Utility Gas	74.90%	80.60%
Tank or LP Gas	1.30%	1.10%
Electricity	6.30%	10.30%
Fuel		
Oil/Kerosene	15.70%	6.90%
Coal or Coke	0.00%	0.00%
Wood	0.50%	0.00%
Solar Energy	0.00%	0.00%
Other Fuel	1.10%	0.70%
No Fuel Used	0.30%	0.40%

Year	Number of Households
1990	6,822
2000	6,880
% Increase	0%

	Mon	APPEN_ tgomery I Consun 2000-200	County option			
		2000 20				Percent
						Change
	2000	2001	2002	2003	2004	2002-2004
CONSUMPTION						
CNG/FAST FILL	8,892	2,551	25,853	18,621	533,826	1965%
CNG/SLOW FILL	101,326	-	401,599	-	-	
	-				· ·	
DIESEL ETHANOL	2,657,698	8,015 130				4% 326%
	1 716 005		,	·	-	
UNLEADED	1,716,905	6,543	1,601,921	1,739,650	1,855,273	16%
Total	4,484,821	17,239	4,815,018	5,340,192	5,468,610	14%
EXPENDITURES						
CNG/FAST FILL	\$11,388	\$5,023	\$25,688	\$24,002	\$924,765	3500%
CNG/SLOW FILL	\$107,038		\$238,428	\$304,571	\$135,394	-43%
DIESEL	\$3,344,738	\$14,404	\$2,776,802	\$3,763,654	\$4,267,517	54%
ETHANOL		\$271	\$11,981	\$46,524	\$76,255	536%
UNLEADED	\$2,233,680	\$11,756	\$1,707,147	\$2,135,428	\$2,790,470	63%
Total	\$5,696,843	\$31,454	\$4,760,047	\$6,274,179	\$8,194,401	72%
EXPENDITURE/ CONSUMPTION						
CNG/FAST FILL	\$1.28	\$1.97	\$0.99	\$1.29	\$1.73	74%
CNG/SLOW FILL	\$1.06		\$0.59			
DIESEL	\$1.26	\$1.80	\$1.00	\$1.19	\$1.48	48%
ETHANOL		\$2.08				
UNLEADED	\$1.30			\$1.23		
Source: Montgomery Count	ty					

APPEN_ 6.E Montgomery County

MWCOG Regional Energy Plan

APPENDIX 7

Guide to the Rate Of Return On Purchasing Higher Fuel Efficient Vehicles:

				VEHICLE FU	EL EFFIC Miles Di	endix 7_A CIENCY SA riven: 50,00 acement Co)0	-	Ι	1	1		
	Price per Gallon (DC Metro Region)	r 15 C C C C C C C C C C C C C											
(1)	(2)												
October 4, 2004	\$1.91	15	\$0.13	25	\$0.08	\$0.05	50,000	\$2,548	\$5,000	1.96	51%	26%	
October 5, 2005	\$3.09	15	\$0.21	25	\$0.12	\$0.08	50,000	\$4,116	\$5,000	1.21	82%	68%	
Scenario 1	\$3.59	15	\$0.24	25	\$0.14	\$0.10	50,000	\$4,783	\$5,000	1.05	96%	91%	
Scenario 2	\$4.34	15	\$0.29	25	\$0.17	\$0.12	50,000			0.86	116%	134%	
Scenario 3	\$5.34	15	\$0.36	25	\$0.21	\$0.14	50,000	\$7,116	\$5,000	0.70	142%	203%	
Other Measures	Other Measures That Need to Be Considered												
	Non-Gasoline Operating Costs												
	Reduction in Pollution												
	Increased	d Energ	y Indepen	dence									

Appen_7_A: Miles Driven: 50,000; Incremental Replacement Costs, \$5,000

Appendix 7_B VEHICLE FUEL EFFICIENCY SAVINGS MODEL Miles Driven: 50,000 Incremental Replacement Costs: \$10,000												
October 4, 2004	\$1.91	15	\$0.13	25	\$0.08	\$0.05	50,000	\$2,548	\$10,000	3.92	25%	6%
October 5, 2005	\$3.09	15	\$0.21	25	\$0.12	\$0.08	50,000	\$4,116	\$10,000	2.43	41%	17%
Scenario 1	\$3.59	15	\$0.24	25	\$0.14	\$0.10	50,000	\$4,783	\$10,000	2.09	48%	23%
Scenario 2	\$4.34	15	\$0.29	25	\$0.17	\$0.12	50,000	\$5,783	\$10,000	1.73	58%	33%
Scenario 3	\$5.34	15	\$0.36	25	\$0.21	\$0.14	50,000	\$7,116	\$10,000	1.41	71%	51%
Other Measures That Need to Be Considered Non-Gasoline Operating Costs Reduction in Pollution												
Compiled by			gy Indepe									

Appen_7_B: Miles Driven: 50,000; Incremental Replacement Costs, \$10,000

	I		VI	-	FUEL EF	ppendix 7_0 FICIENCY Driven: 75 eplacement	SAVIN ,000		L				
	Price per Gallon (DC Metro Region)	per allon DC letro egion											
(1)	(2)	(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)											
October 4, 2004	\$1.91	15	\$0.13	25	\$0.08	\$0.05	75,000	\$3,822	\$5,000	1.31	76%	58%	
October 5, 2005	\$3.09	15	\$0.21	25	\$0.12	\$0.08	75,000			0.81	123%	152%	
Scenario 1	\$3.59	15	\$0.24	25	\$0.14	\$0.10	75,000	\$7,174	\$5,000	0.70	143%	206%	
Scenario 2	\$4.34	15	\$0.29	25	\$0.17	\$0.12	75,000	\$8,674	\$5,000	0.58	173%	301%	
Scenario 3	\$5.34	15	\$0.36	25	\$0.21	\$0.14	75,000	\$10,674	\$5,000	0.47	213%	456%	
Other Measures	That Nee	d to Be	Consider	ed							•		
Non-Gasoline Operating Costs													
Reduction in Pollution													
Increased Energy Independence													

Appen_7_C: Miles Driven: 75,000; Incremental Replacement Costs, \$5,000

			VI		FUEL EF	opendix 7_l FICIENCY Driven: 75 placement	SAVIN ,000		L		1			
	Price per Gallon (DC Metro Region)	per allon DC tetro Interesting Base) Per Mile Agasoline DC tetro Interesting Costs Per Mile DC Total Cost Per Mile Costs Per Mile Costs Costs Per Mile Costs Costs Per Mile Costs Costs Costs Per Mile Costs												
(1)	(2)													
October 4, 2004	\$1.91	15	\$0.13	25	\$0.08	\$0.05	75,000	\$3,822	\$10,000	2.62	38%	15%		
October 5, 2005	\$3.09	15	\$0.21	25	\$0.12	\$0.08	75,000	\$6,174	\$10,000	1.62	62%	38%		
Scenario 1	\$3.59	15	\$0.24	25	\$0.14	\$0.10	75,000	\$7,174	\$10,000	1.39	72%	51%		
Scenario 2	\$4.34	15	\$0.29	25	\$0.17	\$0.12	75,000	\$8,674	\$10,000	1.15	87%	75%		
Scenario 3	\$5.34	15	\$0.36	25	\$0.21	\$0.14	75,000	\$10,674	\$10,000	0.94	107%	114%		
Other Measures	Other Measures That Need to Be Considered													
	Non-Gasoline Operating Costs													
	Reduction in Pollution													
Compiled by	Increased Energy Independence													

Appen	7_	D: Miles	Driven:	75,000;	Incremental	Replacement	Costs, \$10,000
-------	----	----------	----------------	---------	-------------	-------------	-----------------

MWCOG Regional Energy Plan APPENDIX 9

APPEN_ 9.A – EIA Sector Definitions

Commercial sector: An energy-consuming sector that consists of service-providing facilities and equipment of: businesses; Federal, State, and local governments; and other private and public organizations, such as religious, social, or fraternal groups. The commercial sector includes institutional living quarters. It also includes sewage treatment facilities. Common uses of energy associated with this sector include space heating, water heating, air conditioning, lighting, refrigeration, cooking, and running a wide variety of other equipment. Note: This sector includes generators that produce electricity and/or useful thermal output primarily to support the activities of the above-mentioned commercial establishments.

Industrial sector: An energy-consuming sector that consists of all facilities and equipment used for producing, processing, or assembling goods. The industrial sector encompasses the following types of activity: manufacturing (NAICS codes 31-33); agriculture, forestry, fishing and hunting (NAICS code 11); mining, including oil and gas extraction (NAICS code 21); and construction (NAICS code 23). Overall energy use in this sector is largely for process heat and cooling and powering machinery, with lesser amounts used for facility heating, air conditioning, and lighting. Fossil fuels are also used as raw material inputs to manufactured products. Note: This sector includes generators that produce electricity and/or useful thermal output primarily to support the abovementioned industrial activities.

Residential sector: An energy-consuming sector that consists of living quarters for private households. Common uses of energy associated with this sector include space heating, water heating, air conditioning, lighting, refrigeration, cooking, and running a variety of other appliances. The residential sector excludes institutional living quarters.

Transportation sector: An energy-consuming sector that consists of all vehicles whose primary purpose is transporting people and/or goods from one physical location to another. Included are automobiles; trucks; buses; motorcycles; trains, subways, and other rail vehicles; aircraft; and ships, barges, and other waterborne vehicles. Vehicles whose primary purpose is not transportation (e.g., construction cranes and bulldozers, farming vehicles, and warehouse tractors and forklifts) are classified in the sector of their primary use. An energy-consuming sector that consists of all vehicles whose primary purpose is transporting people and/or goods from one physical location to another. Included are automobiles; trucks; buses; motorcycles; trains, subways, and other rail vehicles; aircraft; and ships, barges, and other waterborne vehicles. Vehicles whose primary purpose is not transportation (e.g., construction cranes and bulldozers, farming vehicles; aircraft; and ships, barges, and other waterborne vehicles. Vehicles whose primary purpose is not transportation (e.g., construction cranes and bulldozers, farming vehicles; aircraft; and ships, barges, and other waterborne vehicles. Vehicles whose primary purpose is not transportation (e.g., construction cranes and bulldozers, farming vehicles, and warehouse tractors and forklifts) are classified in the sector of their primary purpose is not transportation (e.g., construction cranes and bulldozers, farming vehicles, and warehouse tractors and forklifts) are classified in the sector of their primary use.

Source: Energy Information Administration Web Site Glossary http://www.eia.doe.gov/glossary/index.html

State	Jurisdiction	Electric Suppliers	
			Gas Suppliers
VIRGINIA	City of Alexandria	Dominion Virginia Power	Washington Gas
	Fairfax County	Dominion Virginia Power NOVEC (Northern Virginia Electric Cooperative)	Columbia Gas of Virginia Washington Gas
	Loudoun County	Dominion Virginia Power NOVEC	Columbia Gas of Virginia Washington Gas
	Arlington County	Dominion Virginia Power	Washington Gas
	City of Falls Church	Dominion Virginia Power	Washington Gas
	Prince William County	Dominion Virginia Power NOVEC	Columbia Gas of Virginia Washington Gas
	City of Fairfax	Dominion Virginia Power	Washington Gas
	City of Manassas	City of Manassas Utilities	Columbia Gas of Virginia Washington Gas
	City of Manassas Park	NOVEC	Columbia Gas of Virginia Washington Gas
MARYLAND	City of Bowie	Pepco Energy Services BGE Home Products & Services	Washington Gas
	City of Gaithersburg	Pepco Energy Services	Washington Gas
	Prince George's County	Pepco Energy Services BGE Home Products & Services	Washington Gas
	City of College Park	Pepco Energy Services	Washington Gas
	City of Greenbelt	Pepco Energy Services	Washington Gas
	Montgomery County	Allegheny Power Pepco Energy Services BGE Home Products & Services	Washington Gas
	City of Rockville	Pepco Energy Services	Washington Gas
	City of Takoma Park	Pepco Energy Services	Washington Gas
	Frederick County	Allegheny Power	Washington Gas
DISTRICT OF COLUMBIA		Pepco Energy Services	Washington Gas ECONnergy**

APPEN_ 9.B - Non-Government Sector Gas and Electric Service Suppliers

** A request for energy consumption and price information was sent to ECONnergy. Although the firm is licensed to serve the District of Columbia, no services are currently offered. *Compiled by: Jerome S. Paige & Associates*

APPEN_ 9.C Sample Request

Dear Ms. Bacon:

Thank you for promptly returning my call and your willingness to follow up with the appropriate personnel in your firm on our request. Background information, as well as the data we are requesting, follow.

Background

The Metropolitan Washington Council of Governments (MWCOG) has tasked Jerome S. Paige & Associates, LLC to establish a consumption, price and expenditure energy profile for the 19 jurisdictions that compose MWCOG. Their last comprehensive energy assessment was done in 1982. Our firm specializes in the areas of forensic economics, business and economic analysis and organizational change. We also provide organizational support services in the areas of strategic planning, performance measurement/management, business manage ment and change management. You will find more information about our firm at www.PaigeAndAssociates.com ...

Our primary MWCOG contact is Mr. George Nichols and he ca n be reached at 202 -962-3355 or <u>gnichols@mwcog.org</u>. You can view more information about MWCOG at <u>www.mwcog.org</u>.

Our Request

We contacted you after confirming with Ms. Julia Hutchins at Energy Information Administration (EIA) that the consumption, price and expenditure information provided at the state level could not be disaggregated to the jurisdictional level. In order to develop the MWCOG database to parallel the EIA information at the state level, we need to go to the same source and that is each of the energy suppliers.

Hence, my call earlier today. We need to know how much electricity (in million kilowatt hours) and average price (if available), was delivered in **1990, 2000, 2001, 2002, 2003** and **2004** for the jurisdictions listed below and by sector (residential, commerical, industrial, transportation and all other) for each of these jurisdictions.

Virginia:

City of Alexandria Fairfax County Loudoun County Arlington County City of Falls church Prince William County City of Fairfax City of Manassas City of Manassas Park

Maryland:

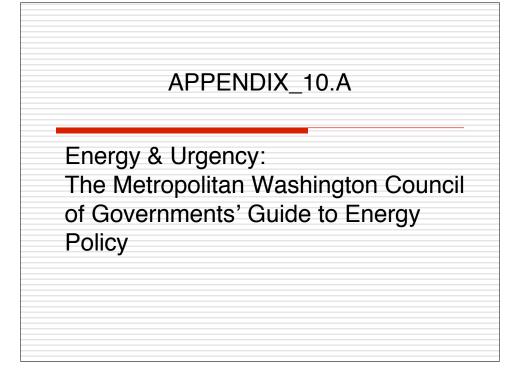
City of Bowie City of Gaithersburg Prince George's County City of College P ark City of Greenbelt City of Rockville Montgomery County City of Takoma Park Frederick County

District of Columbia: Please note, we do not need information for the District of Columbia but we include it here to show the 19 MWCOG jurisdictions and for f uture reference as we are looking to establish a methodology to keep the MWCOG energy profile updated.

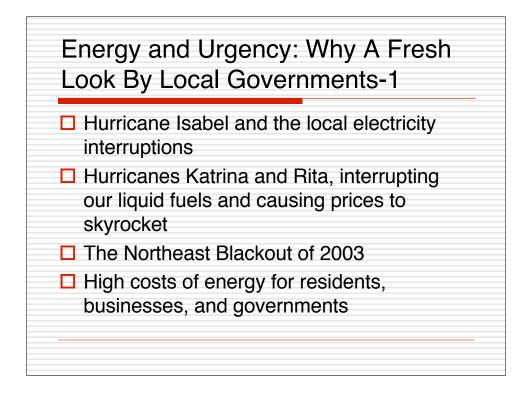
Date Needed

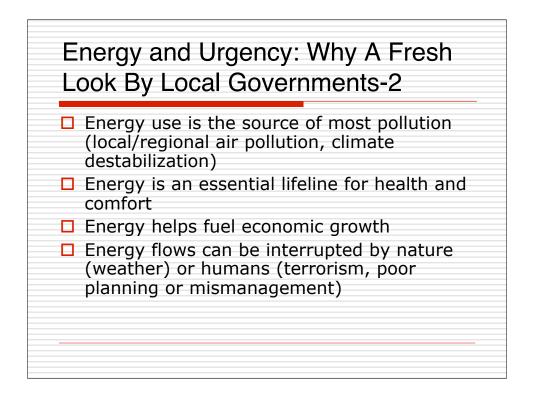
We would appreciate receiving the requested information on or before March 30, 2005.

Utility Company or Jurisdiction	Request Sent	Company Response	Consump. Info.	Price Info.	Periods Covered	Sector Defined Same as EIA	Other
Allegheny Power	4/5/05	5/20/05	Yes	Yes	2000 - 2004	Yes	
BGE	3/21/05	3/29/05	Yes	Yes	1999 - 2004	Yes	Limited service to MWCOG jurisdictions; in Montgomery County, a few small towns just below Potomac River and Laurel in PG County. Cannot disaggregate consumption without account numbers.
City of Manassas Utilities	4/15/05	7/22/05	Yes	Yes	1990, 2000 - 2004	Yes	
Columbia Gasof Virginia	3/23/05	7/18/05	Yes	No	2000 - 2004	Yes	Cannot disaggregate consumption information nor can they sort their files by zip code. Serves parts of Fairfax, Loudoun and Prince William Counties as well as Manassas and Manassas Park.
Dominion Vir ginia Power	3/18/05	7/8/05	Yes	Yes	2000 - 2004	Yes	Residential data not available for 1990, 2000 and 2001.
Montgomery County		4/13/05	Yes	No	2002 - 2004	N/A	Information kept by two categories, residential and non - residential.
Northern Virginia Electric Cor poration (NOVEC)	3/21/05						Can supply information for \$10,000. NOVEC serves portions of Fairfax, Loudoun and Prince William Counties and Manassas Park
Pepco Energy Service	3/18/05	8/12/05	Yes	No	2000 - 2004	N/A	
Washington Gas	3/17/05	8/3/05	Yes	No	1990, 2000- 2004	Yes	

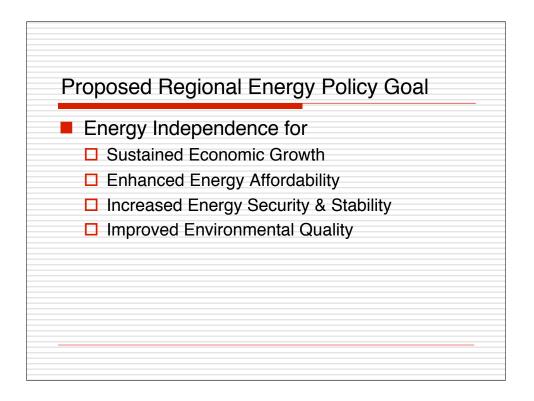

APPEN_ 9.D - Summary of Gas and Electric Supplier Research

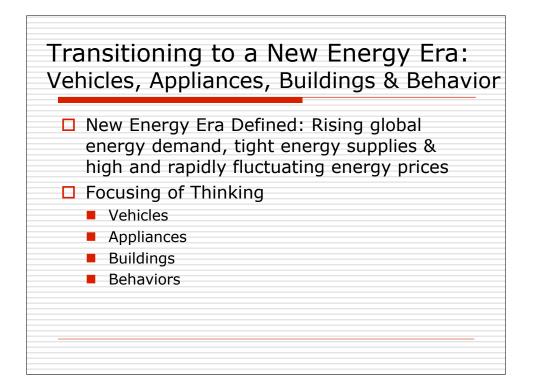
APPEN_9E Maryland Jurisdiction Zip Code Data MARYLAND JURISDICTION ZIP CODES


Frederick	Montgomery	Prince	Bowie	College	Gaithersburg	Greenbelt	Rockville	Takoma
County	County	George's County	County	Park County	County	County	County	County
20842	20088	20601	20715	20740	20877	20768	20847	20912
20871	20707	20607	20716	20742	20878	20770	20848	20913
21701	20783	20608	20717		20879	20771	20849	
21702	20787	20613	20718		20882		20850	
21703	20812	20623	20719		20884		20851	
21704	20813	20703	20720		20885		20852	
21710	20814	20705	20721		20886		20853	
21714 21716	20815 20816	20706 20707					20854 20855	
21710	20810	20708					20855	
21718	20818	20709						
21719	20824	20710						
21727	20825	20712						
21754	20827	20715						
21755	20830	20716						
21757 21758	20832 20833	20717						
21759	20833	20718 20719						
21762	20838	20720						
21769	20839	20721						
21770	20841	20722						
21771	20842	20731						
21773	20847	20735						
21774	20848	20737						
21775 21776	20849 20850	20738 20740						
21770	20850	20740						
21778	20852	20743						
21780	20853	20744						
21783	20854	20745						
21787	20855	20746						
21788	20859	20747						
21790	20860	20748						
21791 21792	20861 20862	20749 20750						
21792	20862	20752						
21798	20868	20753						
	20871	20757						
	20872	20762						
	20874	20768						
	20875 20876	20769 20770						
	20870	20770						
	20878	20772						
	20880	20774						
	20882	20775						
	20884	20780						
	20885	20781						
	20886 20889	20782 20783						
	20889	20783						
	20892	20785						
	20894	20788						
	20895	20791						
	20896	20792						
	20898	20903						
	20899 20901	20912						
	20901							
	20902							
	20904							
	20905							
	20906							
	20907							
	20908 20910							
	20910							
	20912							

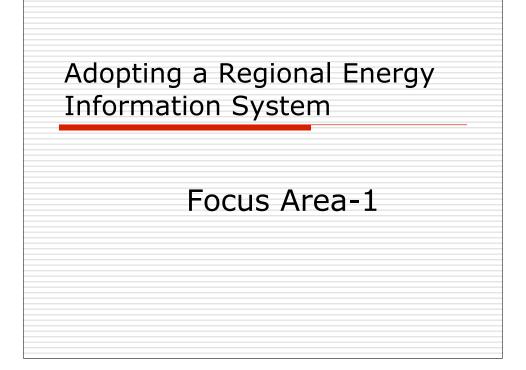

APPEN_9.F Virginia Jurisdiction Zip Code Data VIRGINIA JURISDICTION ZIP CODES

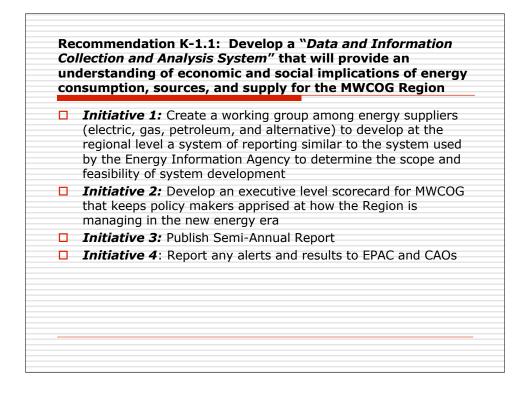

Arlington County	Fairfax County	Loudoun County	Prince William County	Alexandria County	Fairfax City County	Falls Church County	Manassas City County	Manassas Park City
22201 22203 22204 22205 22206 22207 22209 22210 22211 22213 22214 22215 22216 22217 22219 22226 22227 22226 22227 22220 22230 22234 22242 22242 22243 22244 22245 22244	20120 20121 20122 20124 20151 20153 20170 20171 20172 20190 20191 20192 20193 20194 20195 20196 22003 22031 22032 22031 22032 22033 22034 22035 22037 22036 22037 22036 22037 22036 22037 22036 22037 22036 22037 22036 22037 22036 22037 22036 22037 22036 22037 22036 22037 22036 22037 22036 22037 22036 22037 22036 22037 22038 22041 22042 22043 22044 22046 22060 22066 22067 22079 22081 22060 22066 22067 22079 22081 22027 22082 22101 22102 22103 22106 22107 22108 22107 22108 22107 22108 22107 22108 22107 22108 22106 22107 22108 22107 22108 22107 22108 22107 22108 22106 22107 22108 22107 22082 22101 22102 22103 22106 22107 22108 22106 22107 22108 22109 22101 22102 22103 22106 22107 22082 22107 22081 2205 22060 22107 22108 2218 221	20101 20102 20103 20104 20105 20107 20117 20118 20132 20134 20135 20141 20142 20146 20147 20148 20152 20158 20159 20160 20163 20164 20165 20166 20167 20175 20176 20177 20178 20180 20180 20184 20197	20109 20110 20111 20136 20137 20143 20155 20168 20169 20181 20182 22026 22125 22134 22192 22193 22194 22195	22301 22302 22304 22305 22311 22313 22314 22332 22333 22334 22336	22030 22031 22033 22034 22036 22037 22038 22039	22040 22041 22043 22044 22046	20108 20109 20112	20111 20113

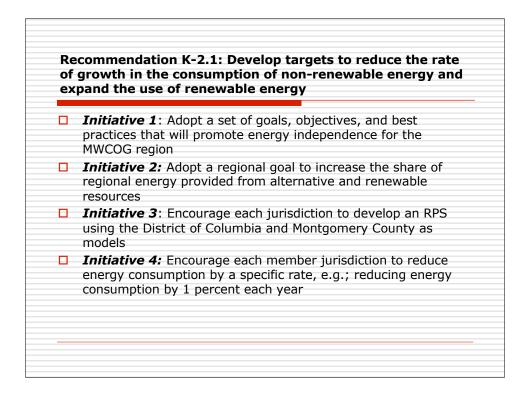


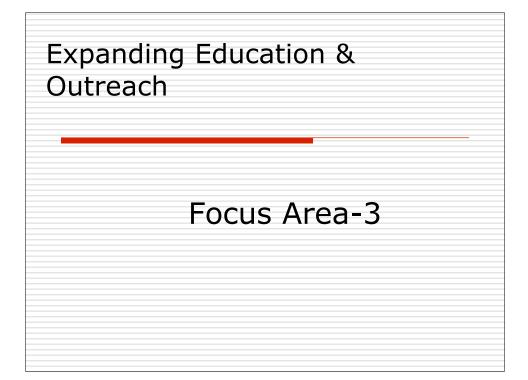


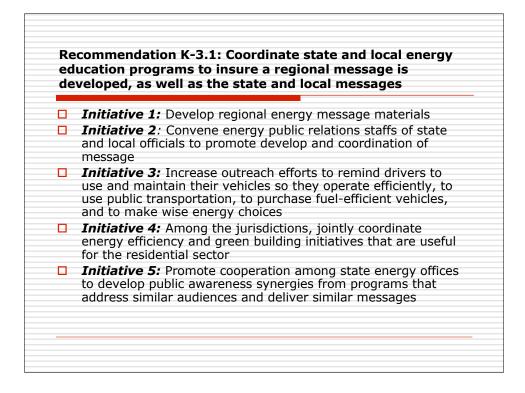


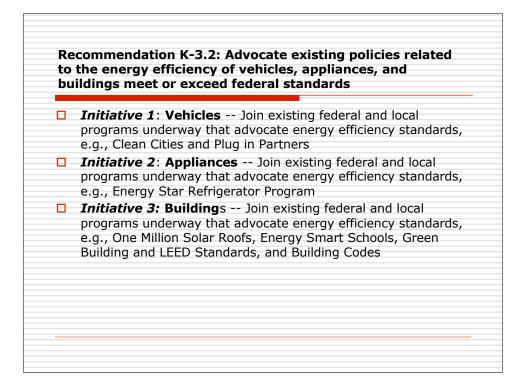


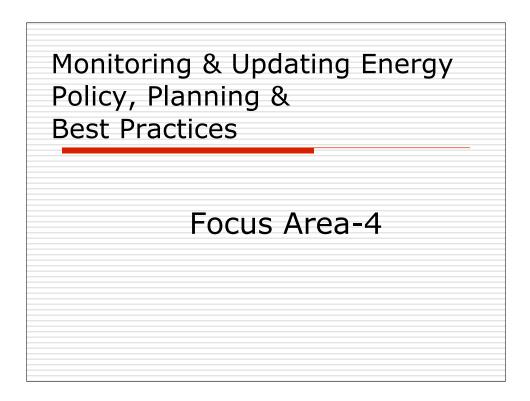


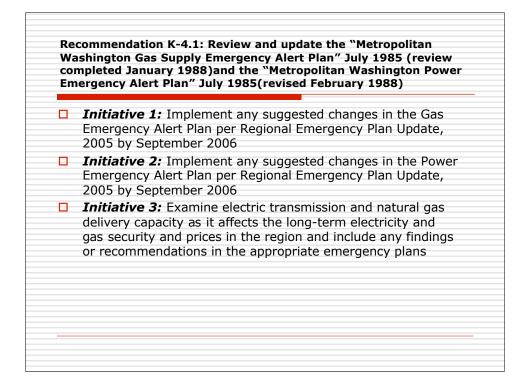


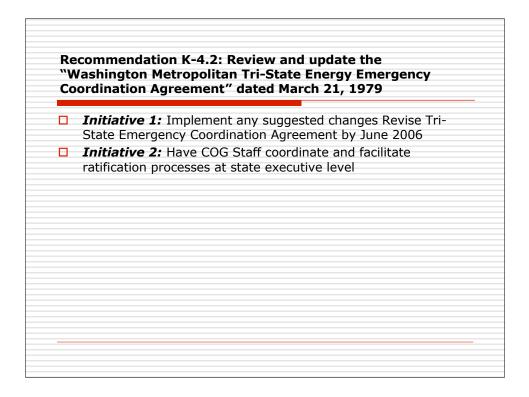


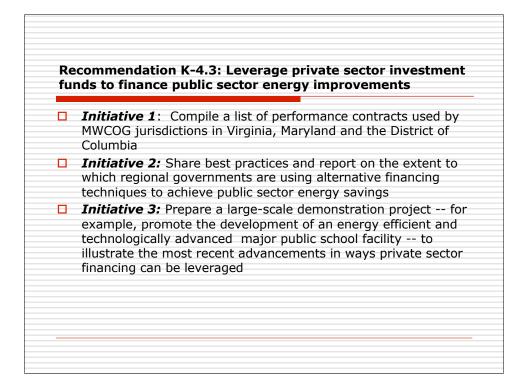


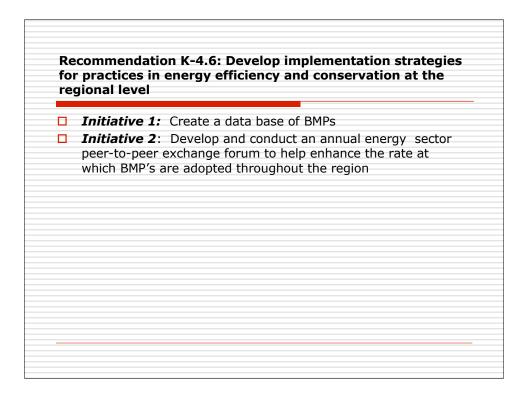


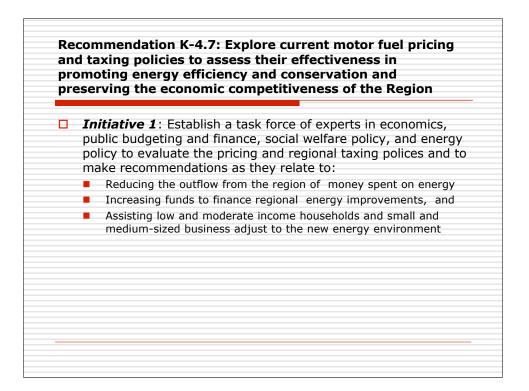












- □ **Initiative 1:** Request annual data from states on use of provisions in EPACT 2005, e.g. tax credits on alternative, clean fuel vehicles, on bio-diesel fuels, and on renewable energy
- □ **Initiative 2:** Prepare a "benefits sheet" that illustrates the additional financial and energy savings and air quality improvements that can be gained by taking full advantage of the provisions in the law

JEROME S. PAIGE & ASSOCIATES (JSP & Associates) is a professional services firm that specializes in the areas of pubic policy research, business and economic analysis, forensic economics and organizational change. Dr. Paige, and his team, with regular and easy access to Washington, D. C., has extensive experience in public policy infrastructure, with an emphasis on understanding the implications of such policy. Consistently, JSP & Associates has provided governments and businesses with decision making tools that yield the desired results.

Dr. Paige and his associates routinely analyze business, economic and public policy issues for state governments, regional associations, federal agencies, academic institutions, legal communities, and non-profit organizations.

Associates at the firm translate complicated governmental and business issues into sound recommendations and solid initiatives.

Additionally, JSP & Associates provides organizational support services in the areas of strategic planning, business development, performance measurement, performance management and change management. The firm's mission is to help its clients provide convincing evidence, make critical decisions, and improve organizational effectiveness. JSP & Associates is recognized as a leader in economic, business and organizational solutions.

The team assembled to work on the 2005 MWCOG Regional Energy Plan includes Jerome S. Paige, Joyce E. Henderson, Lenneal Henderson, Felicia McDade, Don Milsten, and David Terry. Detailed biographies follow.

JEROME S. PAIGE, PH.D.

Dr. Paige, who holds a Ph.D. in economics, is a principal in his firm, Jerome S. Paige & Associates, LLC -- an economic consulting firm that specializes in the areas of pubic policy research, business and economic analysis, forensic economics and organizational change. In addition to leading the development of the Metropolitan Washington Council of Government's Regional Energy Plan 2005, Dr. Paige led the development of two comprehensive energy planning teams for the DC Energy Office. He is currently providing consulting services to the DC Energy Office in the areas of performance measurement and management, and leadership and change management.

Dr. Paige has been involved in energy-related issues since the late 1970s when he was founding member of the DC Consumer Utility Board. He has provided expert testimony on behalf of the DC Office of the People's Counsel before the DC Public Service Commission. In addition to his work in the energy policy arena, Dr. Paige provides expert testimony in civil litigation and administrative matters in the areas of economics, finance, accounting and insurance.

Dr. Paige has been a full-time and part-time professor and an academic administrator at several educational institutions – National Defense University (NDU), University of Baltimore (UB), and the University of the District of Columbia (UDC). In addition to standard courses in economics, he has taught courses in regulatory economics and in economic policy.

While on leave from UDC (1986-1988), Dr. Paige served as the Deputy Director of the Mayor's Policy Office in the District of Columbia. Also while at UDC, Dr. Paige served as interim Director of the Institute for District Affairs (IDA) and a Senior Research Scholar at IDA's successor, the Center for Urban Policy and Research (CARUP), where he participated in and/or directed studies related to housing, neighborhood revitalization, cable television, economic development, tourism, supermarket demand, and politics in the District of Columbia.

Dr. Paige currently holds adjunct faculty positions at The School of Information Studies, Syracuse University (information studies) and The George Washington University Organizational Sciences Program (managerial economics).

Dr. Paige received his Ph.D and Master's degrees in economics from American University and his B.A. degree in economics from Howard University.

JOYCE E. HENDERSON, MBA

Ms. Henderson has 25 plus years of domestic and international experience in general management with specific experiences in strategic planning, organization planning and development, market research, marketing, process and product engineering, project and product management, customer service and organization planning and development. Ms. Henderson spent most of her years in management working for two major Fortune 500 companies, Westinghouse Electric Corporation and The Equitable Life Assurance Society (aka as AXA Financial). Over the past six years, she has been a subcontractor to other firms working as a consultant with emphasis on needs assessment, market analysis and strategic planning in energy and other business areas. Ms. Henderson previously worked along with Jerome Paige and Associates and others on the 2002 Comprehensive Energy Plan the District of Columbia.

Ms. Henderson's career began as a systems analyst developing automated solutions to improve productivity in the workforce. She has since managed both technical and non-technical projects and organizations ranging in size from 20 to 100 plus people, product lines in excess of \$100 million and project budgets up to \$30 million. She has conducted business in 14 countries and has served as interim President for a Japanese/American joint venture company. Ms. Henderson has developed strategic plans for businesses as well as non-profits, turned loss businesses into profitable businesses and significantly improved operational performance by restructuring organizations, implementing effective human resource programs and sound information management systems, and transitioned organizations to state-of-the-art technology.

Ms. Henderson earned a BS degree in Business Administration from Virginia State University in 1965 and a MBA, in Management from Pace University in 1975. She has supplemented her education with numerous courses in management, marketing, strategic planning and leadership, the latest being the Oxford Strategic Leadership Program sponsored by Oxford University in November 2001.

LENNEAL HENDERSON, PH.D.

Dr. Lenneal Henderson is a Senior Consultant with Jerome S. Paige & Associates. He is also currently a Distinguished Professor of Government and Public Administration and Senior Fellow at the William Donald Schaefer Center for Public Policy and a Senior Fellow in the Hoffberger Center for Professional Ethics at the University of Baltimore where he was formerly a Henry C. Welcome Fellow.

For 2001-2007, he served as the Daniel T. Blue Endowed Professor of Political Science at North Carolina Central University in Durham, North Carolina. He was also recently selected as a Fulbright Senior Specialist. In November 2005, he was elected a Fellow of the National Academy of Public Administration. He served as a Policy Analyst in the Office of the Assistant Secretary for Policy and Evaluation at the United States Department of Energy from 1977-79 working on both the International Energy Agency and on small scale renewal energy projects in Guyana, Trinidad-Tobago, Barbados and Jamaica; and as Vice President for Energy Management and, subsequently, Vice President for Science and Technology at the Ronson Management Corporation of Alexandria, Virginia, managing contracts with the Bonneville Power Administration, the U.S. Department of Energy and the U.S. Agency for International Development. Since 1990, he has served as a Part Time Scientist at the Argonne National Laboratory conducting and publishing studies on household energy consumption and expenditure, environmental justice and electricity deregulation. He has also served as a consultant to the Edison Electric Institute and to the Tata Energy Research Institute of Bombay and New Delhi, India.

Since 1979, he has served as an expert witness in natural gas and electricity cases before the Maryland and District of Columbia Public Service Commissions and before the Federal Energy Regulatory Commission. He has also testified before the Maryland legislature on electricity deregulation issues. His books include Black Political Life in the United States, Administrative Advocacy: Black Administrators in Urban Bureaucracies, The New Black Politics: The Search for Political Power (Edited with Michael Preston and Paul Puryear), Public Administration and Public Policy: A Minority Perspective (with Lawrence Howard and Deryl Hunt) and, most recently, Dimensions of Learning: Education for Life (with Bernice D. Johnson, Debra Parker and Magnoria Lunsford).

His publications on energy have appeared in Energy Economics, The Journal of Peace, The National Civic Review, The Public Administration Review, the Public Organizational Review: A Global Journal, The Review of Black Political Economy, the Howard Law Journal, The Annals of American Academy of Social and Political Science, The International Journal of Public Administration, The Journal of Social and Behavioral Science, Administrative Theory and Praxis and other publications and he has given papers on issues including energy policy, urban dynamics, organizational theory and racial and ethnic studies in Israel, Sweden, India, Africa, the People's Republic of China and Russia, Jordan, Estonia, Japan and Australia.

He received his A.B., M.A. and Ph.D degrees from the University of California, Berkeley and has conducted additional postdoctoral study at the Paul Nitze School of Advanced International Studies at Johns Hopkins University focused on energy policy in India and Africa and the George Washington University in Science, Technology and Public Policy.

FELICIA MCDADE, MBA

Ms. McDade, an Associate with Jerome S. Paige & Associates, is a proven leader within the media financial services and insurance industries. As an internal consultant, Ms. McDade has specialized in business development, financial modeling, strategic planning, sales negotiations and marketing to Fortune 500 companies. Ms. McDade spent the last 12 years creating strategy execution for companies, such as The Weather Channel, Turner Broadcasting, and The Walt Disney Company. Ms. McDade's focal point is to create sound strategy execution and ancillary revenue streams while creating solid product offerings.

Ms. McDade's career began in the financial services industry as a Corporate Finance Associate with Bank of America and Senior Associate with Mesirow Financial, a private equity boutique firm. During her tenure in financial services, she consulted Fortune 500 companies and small businesses through many projects including building financial models, creating strategy documents, and marketing private placement memorandums.

Ms. McDade received her B.B.A. in Business Administration from The University of North Texas, and completed her M.B.A. at Clark Atlanta University. Ms. McDade also has a certificate in International Business from the University of Thunderbird in Glendale, Arizona. In addition to her routine activities, Ms. McDade is an Adjunct Professor at University of Phoenix, teaching Strategy & Business Development at the graduate level.

DONALD E, MILSTEN, PH.D.

Donald E, Milsten, PH.D. was Director of the Maryland Energy Office and Administration for twenty years. He promoted energy efficiency through technical and financial programs, legislative proposals and training. He was Chairman of the Southern Solar Energy Center (Atlanta, GA) for three years and he guided Maryland's response to energy shortages in 1977, 1979, 1989, 1990, and 1992. A founder of the National Association of State Energy Officials (NASEO), he served as Treasurer and Vice-Chairman. He chaired the NASEO Energy Data and Security Committee for 10 years and worked closely with the Energy Information Administration to assure the availability of data for states. In this capacity, he also guided the development of an energy information protocol signed by the Secretary of Energy and NASEO.

As a consultant, he provided energy efficiency and management training to over twenty state energy and Department of Energy (DOE) regional offices and revised energy emergency plans for Arkansas, Georgia, North Carolina, Oklahoma, Maryland and Minnesota. He joined with Jerome Paige Associates and others to prepare the Comprehensive Energy Plan III for the District of Columbia and he worked with NASEO for several years helping to prepare State Energy Assurance Guidelines and supporting energy emergency planning and training in coordination with the DOE Office of Energy Assurance. Dr. Milsten was associated with Edwards & Kelcey, a national transportation engineering firm, for six years assisting clients with alternative transportation fuels issues, marketing, traffic and intelligent transportation systems. He continues to be associated with Williams Associates Engineers, PA, a traffic engineering firm in Severna Park Maryland.

Milsten received his BA from Cornell University, Ithaca, New York and his Ph.D. from the University of Michigan in Ann Arbor. He served in the United States Naval Reserve from 1960 to 1966.

DAVID TERRY

David Terry is President of Stateline Energy, LLC of Arlington, Virginia, where he leads the firm's energy policy analysis, program planning, and advocacy services. Mr. Terry has 15 years experience in energy efficiency and renewable energy issues and programs, with particular expertise in biofuels and critical energy infrastructure planning. Stateline Energy's clients include the Governors' Ethanol Coalition, Association of State Energy Research and Technology Transfer Institutions, Compressed Air Challenge, D&R International, SRA International, U.S. Department of Energy, U.S. Environmental Protection Agency, and Rutgers University. Before founding the firm, Mr. Terry was the Managing Director of a Washington, DC, based state energy organization focused on appropriations and energy policy advocacy with federal agencies and Congress. Prior this, he worked with several of national research and policy organizations, such as the National Academy of Sciences, examining energy, environmental, and transportation issues.