

STATE HIGHWAY ADMINISTRATION

TRAVEL DEMAND MODELING ACTIVITIES AT MDOT-SHA

National Capital Region Transportation Planning Board Metropolitan Washington Council of Governments Travel Forecasting Subcommittee

PRESENTATION OUTLINE

- MDOT-SHAs Travel Forecasting Evolving Needs Lisa
- Background/History of Analytical Tools (MSTM-TBM) Lisa/Mark
- Major Components/Research of MSTM-ABM
 - Multi-Resolution Inputs Jonathan
 - Statewide Freight Models (C20) Sabya
 - Long-Distance Passenger Model Lei/Sepehr
 - Statewide Short-Distance ABM Passenger Model (InSITE) Lei/Sepehr
- Next Steps/Future Plans Lisa/Mark
 - Improved Data Sharing with MPO models
 - MSTM-TBM2.0

TFADS EVOLVING AND DIVERSE TECHNICAL NEEDS

ADMINISTRATION

TFADS DIVERSE STAKEHOLDERS AND BUSINESS PARTNERS

MARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION

TFADS EVOLVING AND DIVERSE TECHNICAL TOOLS

MARYLAND STATEWIDE TRANSPORTATION MODEL (MSTM-TBM)

- Developed with UMD and consultant team nearly 15 years ago
- Built off the Baltimore Metropolitan Council (BMC) regional model
- Trip-based model with ≈1,500 zones within Maryland
- Includes a 'halo' region around the state for a total of ≈1,800 zones
- Traditional 4-step model
- 4 time periods
- FHWA per review

MSTM-TBM: MODEL OVERVIEW

- Provides a standardized platform for project evaluation, project prioritization (S.B. 307, e.g. Chapter 30), and statewide performance reporting.
- Socioeconomic inputs consistent with MPOs and MDP forecasts
- MPO zonal data nests within larger SMZs
- CUBE Voyager scripts executed within a MS-DOS batch file
- Approximately one-day runtime (i7 Intel 24core processor, 64 Gb RAM)

MSTM-TBM: TYPICAL IMPLEMENTATIONS

- Complimentary tool with other MPO models (MWCOG, BMC, Wilmapco)
- Project-level analyses still rely on regional MPO models when appropriate.
- Address model needs where evaluation tools are unavailable.
- Universal tool for project evaluation/project prioritization.
- Can better address projects that are along the fringes, traverse multiple MPO modeled regions, or lie outside modeled regions.
- Provides system-wide growth rates for mandatory FHWA-HPMS reporting.
- Informing MDOT-SHA initiatives (Maryland Transportation Plan, Maryland Strategic Goods Movement Plan, Annual Mobility Reports, etc.
- Policy sensitivity analyses (truck lanes, CAVs, etc.).
- Current challenges with evaluating operational issues such as managed lanes, peak spreading, TSMO efforts, etc.

NCHRP/SHRP2 AWARDS AND OTHER RESEARCH

Technical challenges led to exploration of several FHWA/SHRP2 grants

- Behavior based Freight Models (C20): SHA/ BMC developed supply chain based statewide freight models and tour based commercial vehicle models (\$350K)
- Advanced Travel Analysis Tools (C10): SHA/UMD developed a multi-resolution and time-dependent travel demand model for integrated planning and operations (\$700K)
- UMD was also involved in the development of a national longdistance passenger model as part of an FHWA Exploratory Advanced Research (EAR) grant.

STATE HIGHWAY

ADMINISTRATION

DEVELOPMENT OF SELECTED NEW TOOLS

- Multiresolution zones and networks
- The importance of freight in Maryland
- Long distance trips to and from Maryland

MSTM: HIGHWAY NETWORK EVOLUTION

Background

 Original MSTM Network: Developed by stitching together MPO networks at the time and augmented with national data sources.

Challenges

- Quickly becomes outdated as MPO networks evolve and are updated
- Unable to leverage data from MDOT including centerline geography, geometric attributes and count data
- No connection between MSTM and covered models (MWCOG, BMC, Peninsula Model)
- Challenges in application
 - Time required to develop refined networks for model applications

NEW DATA MODEL

• Develop a network database that:

- Leverage data from MDOT and partner models including attributes, counts, projects, etc.
- Consistency in underlying data between overlapping models including trip based, activity based and mesoscopic tools
- Development of a multi-resolution system of geography at both the zone and network scale with:
 - Consistency in design and implementation
 - Nesting of network and zone structures
- Quickly build very high resolution networks for project level analysis, including meso and microscopic tools

SAMPLE SCALABLE PLATFORM: NETWORK

SAMPLE SCALABLE PLATFORM: ZONE STRUCTURE

MDOT-SHA MULTI-RESOLUTION DATABASE

- Built from Centerline file
 - Association of Route, MSTM (v1) and other source datasets to centerline segmentation.
 - Linkage with SHA asset data
 - Creation of segmentation to support model network requirements
 - Single-Point intersection coding for future junction modeling

MDOT-SHA MULTI-RESOLUTION DATABASE

INCORPORATING TRANSIT

MANAGEMENT VIA A GRAPHICAL USER INTERFACE

Graphical User Interface

- Selection of resolution
- Definition of buffer area for resolution transition
- Management of selection process
- Selection of attribute scheme
- Model year, and scenario
- Includes transit data

🖏 Multi-Resolution Network Export						
Current Save Location: C:\Users\whaubert\Documents\MultiResolutionExport						
Resolution Level				Target Model		
Less Detai	Level 1	More	Less	MSTM		
	Level 2	۲	۲	- mone		
	Level 3			-		
More Detai	Level 4	\bigcirc		Scenario Year		
				Base Year	Base year: 2012	
Zone buffer distance (feet): 200			200	Future Year	Scenario Year	
Zones	selected:				Base Year Enter year:	
	Level 1	0			Future Year CLRP	
	Level 2	0		Include Transit?		
	Level 3	0		(Yes		
	Level 4	0		0.00		
	Total	0		INO NO		
Selec	ct Zones	Cle	ar Selection			
EXPO	DRT			Ca	Done	

THE MSTM MULTI-RESOLUTION DATABASE - NEXT STEPS

19

- Implementation of update and maintenance
 - Integration of new projects from SHA, MWCOG, BMC, DeIDOT, and halo regions
 - Moving base year forward
 - Consistency with demographic projections
 - Consistent network scheme across TFAD Tools
- Use of networks to support...

DEVELOPMENT OF BEHAVIOR-BASED FREIGHT MODEL

- Based on SHRP2/C20 research grant
- Includes national supply-chain model, regional truck model, and commercial vehicle truck touring model
- Freight tours available
- O-D's can be based on any time slice (e.g., every 15 minutes)
- Truly multimodal model (not just truck based)
- Freight mode choice can easily be done
- Truck touring model for the entire modeling region
- Open source model structure in R (no installations needed)
- New enhanced dashboard for visualization

C20 FREIGHT MODEL: APPROACH

C20 FREIGHT MODEL: DASHBOARD

- Truck touring model includes MD, DE, DC and portions of VA, PA and WV
- 5,281 SMZs and 132 RMZs

C20 INPUT DATA

- National multimodal network and properties
 - Road/Rail/Waterway/Pipeline
 - Higher resolution in study area
- Zone system
 - Internal and external
- Network skims
- Desired time of days
 - Eight times of day
 - 3-AM Peak (early, peak, late)
 - 1-Midday
 - 3-PM Peak (early, peak, late)
 - 1-Nightime

C20 FREIGHT MODEL: FIRM SYNTHESIS

MSTM-ABM: FUTURE C20 IMPLEMENTATIONS

- Evaluation of port expansion
- Evaluation of truck-only lanes
- Evaluation of truck CAVs
- Commodity assignment post-processor
- Truck parking demand tool

25

MSTM-ABM - LONG-DISTANCE PASSENGER MODEL

Tour Level Procedure and Model Components

STATE HIGHWAY ADMINISTRATION

MARYLAND TRANSPORTATION INSTITUTE

LONG-DISTANCE PASSENGER MODEL COMPONENTS

Model Component	Level	Output	Model
Activity Pattern	Tour Level	Number of Business, Personal Business and Pleasure activities in on year	Multiple Classification Analysis (MCA)
Travel Mode Choice	Tour Level	The Chosen mode from Air, Car and Train alternatives	Multinomial Logit Model
Time of Year Choice	Tour Level	The Chosen time of year for the tour from the choice set{Q1,Q2,Q3,Q4}	Multinomial Logit Model
Tour Duration Choice	Tour Level	Number of Days for a complete tour	Hazard duration Model
Travel Party Size Choice	Tour Level	Determines how many persons participating in the tour	Multinomial Logit Model
Tour Destination Choice	Tour Level	Determines the location of the tour's primary destination at TAZ level	Multinomial Logit Model
Stop Frequency Choice	Stop Level	determines the number of intermediate stops people make on the way to tour destination	Multinomial Logit Model
Stop Purpose Choice	Stop Level	Determines the purpose of each stop	Multinomial Logit Model
Stop Location Choice	Stop Level	Determines the location of each stop	Multinomial Logit Model

STATE HIGHWAY ADMINISTRATION

27

LONG-DISTANCE MODEL CALIBRATION

- System-wide calibration of parameters: find the value of the parameters that minimize the error between observed and modeled
- Airline Origin and Destination Survey (DB1B) data used for calibration
- Mode choice and time-of year choice models were selected to be calibrated against airline OD data
- Alternative specific constants for these models were selected as the variables to be calibrated
- Constrained minimization optimization problem :

 $[[minimize]]_\theta \quad w \mid (\mid O_m - O_S(\theta) \mid) \mid \land 2 \quad s.\dagger \quad O_S = F(Z;\theta) , \ l \le \theta \le u$

LONG-DISTANCE MODEL VALIDATION

 The validation of the long-distance model components is done by crossvalidation using 80 percent % for estimation and 20% for validation.

Mode Choice for Pleasure Tours

LONG-DISTANCE MODEL VALIDATION

30

Stop Purpose Choice Validation

Destination Choice Validation for Pleasure Tours

Stop Location Choice Validation

STATE HIGHWAY

ADMINISTRATION

MSTM-ABM: MODEL CAPABILITIES

- Disaggregate demand at all levels
- Participation decisions for activities
- Chaining of trips according to temporal and spatial constraints
- Decisions based on lifestyle choices
- Fine time resolution of the demand for the 24 hours
- Value of Travel Time Savings for each traveler, and activity type
- Activity-based Accessibility measures

MSTM-ABM: SHORT-DISTANCE PASSENGER MODEL

- Based on BMCs InSITE Activity-Based Travel Demand Model
 - Originally developed by Cambridge Systematics for BMC and extended to cover the state of Maryland and halo area in this project.
 - Composed of interconnected discrete choice models.

MSTM-ABM: SHORT-DISTANCE PASSENGER MODEL (INSITE ABM MODEL STRUCTURE)

MSTM-ABM: MODEL COMPONENTS

Application Sequence	Model Component	Model Applied
0	Population synthesis	Once for entire region
1	Usual Work Location Choice Model (Long-term)	For every worker
2	School Location Choice Model (Long-term)	For every child & (university student)?
3	Vehicle Availability Model (Long-term)	For every household
4	Daily Activity Pattern Model	For every individual
5	Tour destination choice model – mandatory	For every work tour
6	Transit Pass Ownership	For every household
7	E-ZPass Ownership	For every household
8	Tour time-of-day choice model – mandatory	For every mandatory tour
9	School escorting model	For every child making school tour
10	Joint tour model	For every household (with at least 2 traveling members)
11	Tour destination choice model - joint tours	For every joint tour

12	Tour time-of-day choice model - joint tours	For every joint tour
13	Joint tour participation	For every traveler in household
14	Tour generation - individual non-mandatory travel	For every ind <mark>ividual (not</mark> stay-at-home)
15	Tour destination choice model - non-mandatory tours	For every non-mandatory tour
16	Tour time-of-day choice model - non-mandatory tours	For every non-mandatory tour
17	Stop generation model	For every individual half- tour and all joint half-tours
18	Tour mode choice model – mandatory	For every mandatory tour
19	Tour mode choice model - joint tour	For every joint tour
20	Tour mode choice model - non-mandatory	For every non-mandatory tour
21	Stop destination	For every stop
22	Trip mode choice	For every trip
23	Stop time-of-day	For every stop
	· · ·	

ONGOING IMPROVEMENTS FOR MSTM-ABM

Reducing the model run time

 Currently, there are 5 iterations of MSTM-ABM with the first iteration taking approximately 1.5 days.

Comprehensive calibration and validation

 After reducing the runtime of the MSTM-ABM, comprehensive calibration and validation can then be done in a more effective way, which should lead to a even higher accuracy levels.

Integrating MSTM-ABM with Dynamic Traffic Assignment (DTA)

- DTA integration can take full advantage of time-dependent travel demand outputs from the activity-based travel demand model.
- Innovative methods developed with the UMD team to enable the development and integration of a statewide DTA model for MSTM

UPCOMING MDOT-SHA INITIATIVES:

Integration of new tools into practice

• MSTM-ABM, C20, DTA, Long-distance passenger model, etc.

Development of MSTM-TBM2.0

- How can MSTM-ABM be used to inform current MSTM-TBM.
- Higher zonal resolution (6,600) from existing MSTM-TBM (1,800)
- Higher temporal resolution (8 time periods)
- Significantly reduced runtimes compared to MSTM-ABM

Development of a summer seasonal model to better address transportation needs on Maryland's eastern shore

ONGOING/UPCOMING MDOT-SHA/UMD RESEARCH

- Truck Parking Study
- Using RITIS trajectory data to validate longdistance auto flows
- Identification of Best Practice Metrics for Varying Levels of Traffic Operations Analysis
- Evaluating the Effect of Complete Streets on Mode Choice
- Pedestrian Safety Data Analytics Platform (Proof of Concept)

