2020 CONGESTION MANAGEMENT PROCESS (CMP) TECHNICAL REPORT

Jan-Mou Li, Ph. D. TPB Transportation Engineer

TPB Systems Performance, Operations, And Technology Subcommittee (SPOTS) Meeting August 6, 2020

Development History of the 2020 Report

- First draft of full report for internal reviews was disseminated on April 8, 2020.
- TPB Systems Performance, Operations, And Technology Subcommittee were briefed on October 3, 2019, December 5, 2019, April 23, 2020, and August 6, 2020.
- TPB Technical Committee were briefed on May 1, June 5, and July 10, 2020.
- TPB Technical Committee accepted the report as final at its July 10 meeting.

Contents - Congestion and Strategies

- Chapter 2 State of Congestion
 - Regional Travel Trends
 - Congestion on Highways; Transit Systems
 - National Comparison of the Washington Region's Congestion
 - Performance Analysis of Visualize 2045
- Chapter 3 Consideration/Implementation of Strategies
 - Demand Management Strategies (especially Commuter Connections)
 - Operational Management and Integrative/Multi-Modal Strategies
- Chapter 4 Studies of Congestion Management Strategies

Contents - Outcomes

- Chapter 5 How Results of the CMP Are Integrated into the Long-Range Plan
- Chapter 6 Conclusions
 - Key Findings of the 2020 CMP Technical Report
 - 8 Key Findings
 - Recommendations for the Congestion Management Process
 - 18 Recommendations

Key Findings

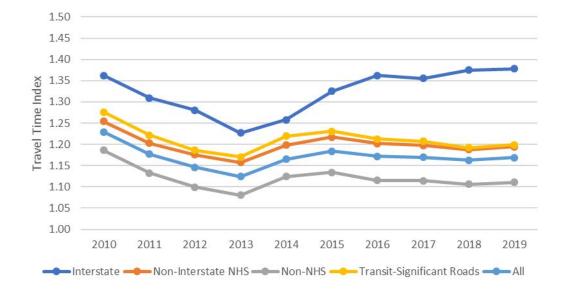
- 1. Congestion analysis
- 2. Reliability analysis
- 3. Bottlenecks
- 4. Travel demand management continues its importance
- 5. Walking/biking continue to grow
- 6. Variably priced lanes offer travel options
- 7. MATOC continues its importance
- 8. Real-time information availability continues its importance

Report Recommendations

- 1. Continue Commuter Connections
- 2. Continue MATOC
- 3. Consider Congestion Management Plan
- 4. Coordinate PBPP and CMP
- 5. Encourage integration of operations and travel demand components of congestion management
- 6. Pursue sufficient investment in the existing transportation system
- 7. Consider variable pricing and other management strategies
- 8. Encourage transit and explore transit priority strategies
- 9. Encourage congestion management for major construction projects

Report Recommendations (cont.)

- 10. Encourage access to non-auto modes
- 11. Continue and enhance traveler information
- 12. Look for safe public engagement through mobile/social media
- 13. Encourage connectivity within/between Activity Centers
- 14. Multiple data sources for congestion monitoring
- 15. Monitor freight trends
- 16. Collaborative planning for connected/autonomous vehicles
- 17. Monitor and enhance interactions with shared mobility services
- 18. Encourage Traffic Incident Management (TIM)

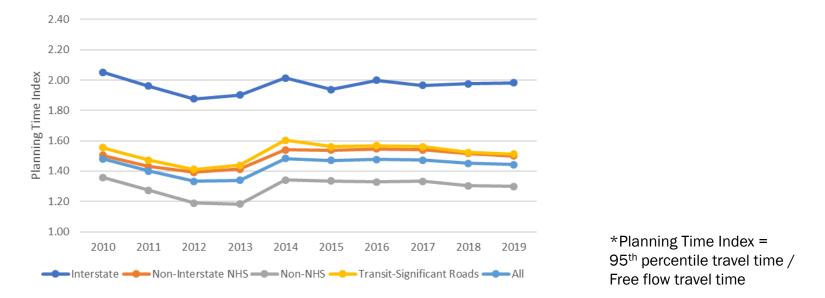

Highlights of the Report

- Among all the others:
 - § 2.2.1 I-95 Corridor Coalition Vehicle Probe Project Traffic Monitoring
 - § 2.2.1.6 Top Bottlenecks
 - § 2.5 National Comparison of the Washington Region's Congestion
 - Appendix A 2019 Peak Hour Travel Time Index
 - Appendix B 2019 Peak Hour Planning Time Index
 - Appendix C 2010 And 2017-2019 Travel Times along Major Freeway Commute Corridors

Peak Period Congestion

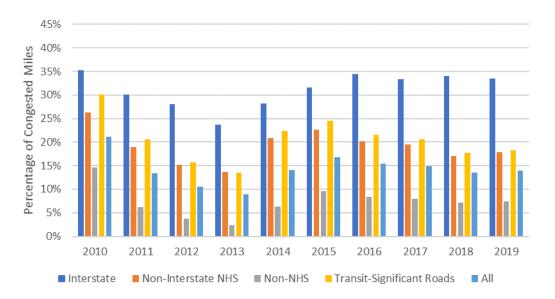
- Peak period congestion decreased between 2010 and 2012, but more recently has increased moderately
 - Travel Time Index* (TTI) decreased by 8.5% between 2010 and 2013 and increased by 3.9% between 2013 and 2019.
 - Interstates remained the most congested highway category, followed by Transit-Significant roads**, non-Interstate NHS, and non-NHS.

*Travel Time Index = Actual travel time / Free flow travel time.


** Transit-Significant Roads: Directional toad segments with at least 6 buses running in the AM peak hour.

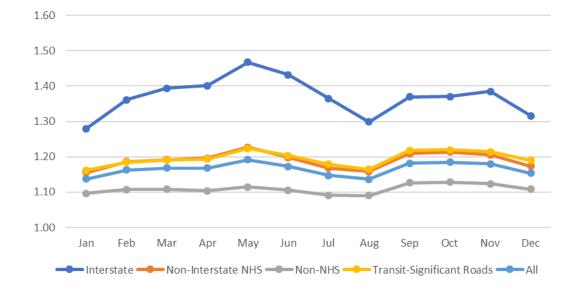
9

Peak Period Travel Time Reliability


- Peak period travel time reliability improved between 2010 and 2012, but more recently has decreased moderately, almost to the 2010 level
 - Planning Time Index* (PTI) improved 10% between 2010 and 2012; the trend went down about 3% from 1.48 in 2014 to 1.44 in 2019.
 - Most unreliable category is Interstates, followed by Transit-Significant Roads, non-Interstate NHS, and non-NHS.

Peak Period Congestion – Percent of Congested Miles

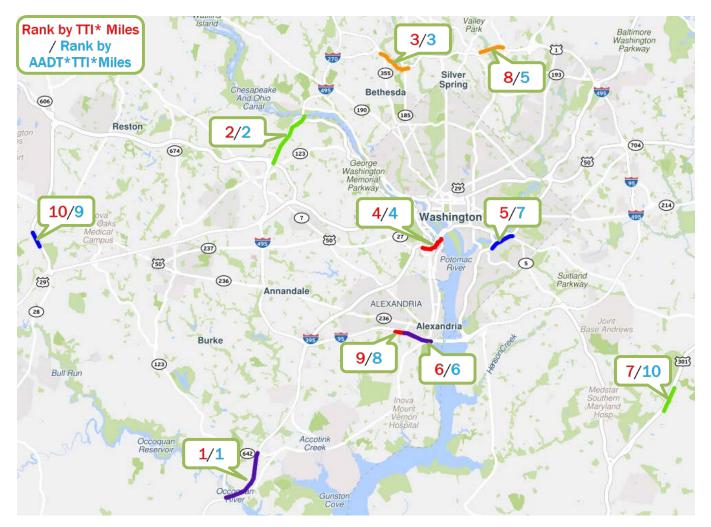
 On average, this region had 14% of roads congested during peak periods in recent years that was a slightly improvement from 17% in 2015. More specifically, 34% of Interstate, 18% of non-Interstate NHS, 7% of non-NHS, and 18% of transit-significant roads were congested in 2019



*Congestion is considered when Travel Time Index > 1.30.

Monthly Variation of Congestion in 2019

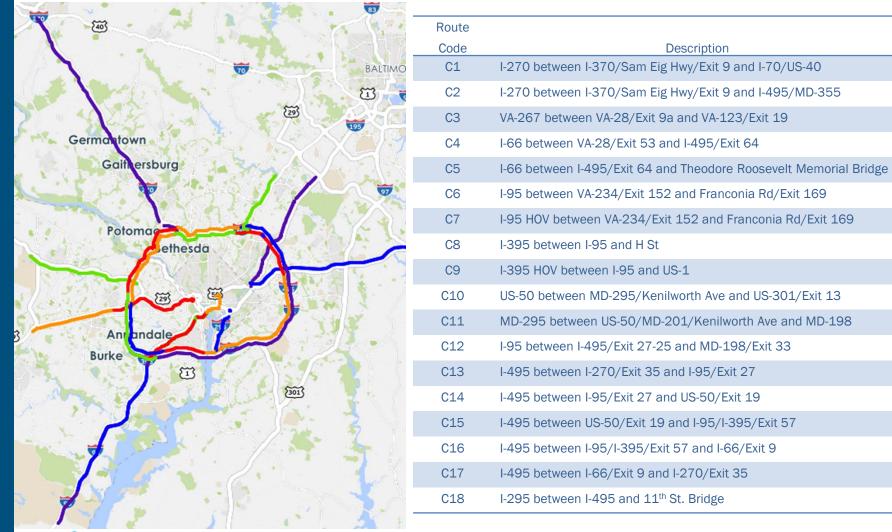
- Monthly variations of congestion were most noticeable on the Interstate System, followed by the Transit-Significant Roads, the Non-Interstate NHS, and the Non-NHS
- The region overall had increasing congestion from January to May, then decreasing congestion through August. October had the highest level of congestion, after that, congestion kept decreasing for the rest of year.


Top 10 Bottlenecks in 2019

Location	State	Ave. TTI	Length (miles)	TTI*Miles	Rank by TTI*Miles	AADT	AADT*TTI* Miles	Rank by AADT* TTI*Miles
I-95 SB between US-1/EXIT 161 and VA-123/EXIT 160	VA	1.90	3.32	6.32	1	229949	1452366	1
I-495 IL between VA-267/EXIT 12 and AMERICAN LEGION BRIDGE	VA	1.72	3.11	5.36	2	168182	901358	2
I-495 IL between MD- 355/WISCONSIN AVE/EXIT 34 and MD-185/CONNECTICUT AVE/EXIT 33	MD	1.55	1.80	2.78	3	231860	645183	3
I-395 NB between EADS ST and MEMORIAL BRIDGE	VA	2.05	1.18	2.41	4	184291	444663	4
DC-295 NB between I-295/EXIT 4 and PENNSYLVANIA AVE	DC	1.74	1.36	2.35	5	124371	292666	7
I-95/I-495 EB near US- 1/RICHMOND HWY/MILL RD	VA	1.54	1.50	2.32	6	154050	356977	6
US-301 NB near OLD INDIAN HEAD RD/ROSARYVILLE RD	MD	1.59	1.32	2.09	7	31871	66731	10
I-495 OL near MD-193/UNIVERSITY BLVD/EXIT 29	MD	1.55	1.25	1.94	8	213179	414513	5
I-495 OL between VA- 241/TELEGRAPH RD/EXIT 2 and US-1/EXIT 1	VA	1.53	1.08	1.65	9	170664	281531	8
VA-28 SB near WESTFIELDS BLVD	VA	1.54	0.85	1.31	10	111293	145738	9

Agenda Item 4: Update on Development of 2020 CMP Technical Report August 6, 2020

Location of Top 10 Bottlenecks in 2019


National Capital Region Transportation Planning Board

§2.5 National Comparison

Texas A&M Transportation Institute (2017 data)			INRIX Traffic (2019	c Scoreca) data)	rd	TomTom Traffic Index (2019 data)			
Annual Hours of Delay per Auto Commuter			Average Hours V	Vasted in	Traffic	Extra Travel Time compared to Free Flow Conditions			
Metro Area	Value	Rank	Metro Area	Value	Rank	Metro Area	Value	Rank	
Los Angeles	119	1	Boston	149	1	Los Angeles	0.42	1	
San Francisco	103	2	Chicago	145	2	New York	0.37	2	
Washington	102	3	Philadelphia	142	3	San Francisco	0.36	3	
New York	92	4	New York City	140	4	San Jose	0.33	4	
Boston	80	5	Washington	124	5	Seattle	0.31	5	
Seattle	78	6	Los Angeles	103	6	Miami	0.31	6	
Atlanta	77	7	San Francisco	97	7	Washington	0.29	7	
Houston	75	8	Portland	89	8	Chicago	0.28	8	
Chicago	73	9	Baltimore	84	9	Honolulu	0.28	9	
Miami	69	10	Atlanta	82	10	Austin	0.27	10	

Major Freeway Commute Routes

Jan-Mou Li, Ph. D.

TPB Transportation Engineer (202) 962-3329 jli@mwcog.org

mwcog.org/tpb

Metropolitan Washington Council of Governments 777 North Capitol Street NE, Suite 300 Washington, DC 20002

