HOV / HOT Lane Modeling and Public Transport Research

Mr. David B. Roden, Senior Consulting Manager

March 22, 2013

2013 Task Orders (** today's topics)

- T.O. 7 Meetings and General Support
- T.O. 8 Traffic Assignment
 - 8.1 HOT-lane Modeling **
 - 8.2 HOV Modeling **
 - 8.3 Speed Validation (submitted draft research memo)
 - Added tech memo, meetings, and simple HOV model
- T.O. 9 Mode Choice and Transit Modeling
 - 9.1 Network Preparation **
 - 9.2 Path Building
 - Added AEMS ModeChoice example/documentation

HOV Modeling

- Motivation and Objective
 - Distinguish natural carpool travelers (joint travel) from those seeking travel time or cost saving (HOV choice)
 - HOV choice should be modeled in Mode Choice
 - Identify independent person and joint trips
 - For individual person trips, limit HOV option to interchanges with travel time or cost advantage
 - A simple HOV choice model was developed as in interim test for evaluation purposes
 - Calibrated to daily and peak period counts on I-95/I-395
 - Only AM peak HBW trips

Proposed Changes

- Current Process
 - 5 Mode Choice models
 - SOV, HOV2, HOV3+, etc.
 - "Two-step"; 6 assignments
 - AM Non-HOV3+
 - AM HOV3+ Only
 - PM Non-HOV3+
 - PM HOV3+ Only
 - MD ALL
 - NT ALL

- Proposed Process
 - 5 Mode Choice^{*} models
 - SOV, HOV2, HOV3+, etc.
 - HOV choice model
 - SOV*, HOV2*, HOV3+*
 - 4 assignments
 - AM ALL
 - PM ALL
 - MD ALL
 - NT ALL

Interim HOV Choice Process

HOV Model Calibration

Compare estimated HOV traffic to counts

- Daily traffic counts from VDOT on the general purpose (GP) lanes and HOV lanes.
- The GP and HOV lane counts include SOV, HOV2 and HOV3+ vehicles since the HOV lanes are available to all travelers at some times of day.
- Source: Kile, M., Documentation for HOV_LOV_Volumes.xlsx, 2/28/13.

Background HOV Traffic

2010 daily background LOV and HOV3+ assigned volumes on I-95/I-395 general purpose lanes and HOV lanes compared to daily counts (AAWDT)

Loc	GPL OBS	GPL EST	EST/ OBS	HOVL OBS	HOVL EST	EST/ OBS	OBS	EST	EST/ OBS
1	87,000	80,210	92%	21,500	21,490	100%	108,500	101,700	94%
2	82,000	83,060	101%	19,500	19,710	101%	101,500	102,770	101%
3	76,500	72,800	95%	19,000	18,870	99 %	95,500	91,670	96 %
5	89,500	102,030	114%	16,000	17,190	107%	105,500	119,220	113%
6	82,000	81,850	100%	25,000	19,130	77%	107,000	100,980	9 4%
7	80,000	83,480	104%	22,000	17,500	80%	102,000	100,980	99 %
8	83,000	82,800	100%	21,000	16,620	79 %	104,000	99,420	96%
9	82,000	81,980	100%	14,500	15,120	104%	96,500	97,100	101%
10	77,000	69,380	90%	12,000	13,720	114%	89,000	83,100	93%
Ш	68,500	75,900	111%	12,000	12,420	104%	80,500	88,320	110%
All	80,750	81,350	101%	18,250	17,180	94 %	99,000	98,530	100%

AECOM

Background AM Peak HOV Demand

2010 AM peak period background LOV and HOV3+ assigned volumes on I-395 at Glebe Road compared with AM peak period vehicle classification counts

	OBS	EST	EST/ OBS		
SOV	20,275	17,643	87%		
HOV2	I,464	544	37%		
HOV3+	6,266	3,167	51%		
Total	28,005	21,354	76%		

- Source: 2010 Performance of High-Occupancy Vehicle Facilities on Freeways in the Washington Region. Washington, D.C.: National Capital Region Transportation Planning Board, 2011.
- AM Peak Period from 6 to 9 AM.

HOV3 Binary Choice Model

• HOV3p' = (SOV + HOV2 + HOV3p) * $\frac{\text{HOV3p} * \exp(-\lambda * (\Delta TT))}{(\text{SOV} + \text{HOV2}) + (\text{HOV3p} * \exp(-\lambda * (\Delta TT)))}$

$$SOV' = (SOV + HOV2 + HOV3p - HOV3p') * \frac{SOV}{(SOV + HOV2)}$$

 $HOV2' = (SOV + HOV2 + HOV3p - HOV3p') * \frac{HOV2}{(SOV + HOV2)}$

where:

- SOV, HOV2 and HOV3p are the background trips
- HOV3p' is the adjusted HOV3+ demand based in travel time benefit
- ΔTT is the travel time benefit to using HOV lanes
- λ is the calibration parameter to shift LOV to HOV3+
 - Two sets of λ are calibrated one $\lambda 1$ for significant travel time benefits, and another $\lambda 2$ for moderate travel time benefits

HOV Model Impacts

2010 AM peak period volumes on I-395 at Glebe Road based on the HOV model

		Backgrou	nd HOV	Adju HQ	isted OV	Adjusted HOV			
					0.15 0.10	λΙ: λ 2 :	λ Ι=0.20 λ 2=0.10		
	OBS	EST	EST/ OBS	EST	EST/ OBS	EST	EST/ OBS		
SOV	20,275	17,643	87%	15,152	75%	14,493	71%		
HOV2	1,464	544	37%	986	67%	1,128	77%		
HOV3+	6,266	3,167	51%	6,541	104%	7,193	115%		
Total	28,005	21,354	76%	22,679	81%	22,814	81%		

Distribution of HOV Demand

2010 AM peak period Shirley Highway HOV3+ trip origins **Background HOV**

Background + HOV Choice

AM Peak Shirley Highway Assignment

2010 AM peak adjusted LOV and HOV3+ assigned volumes on I-95/I-395 general purpose and HOV lanes compared to current MWCOG volumes

Loc	GPL COG	GPL EST	EST/ COG	HOVL COG	HOVL EST	EST/ COG	COG	EST	EST/ COG
1	17,300	17,310	100%	5,690	5,380	9 5%	22,990	22,690	99 %
2	17,910	17,930	100%	5,250	4,910	94%	23,160	22,840	99 %
3	16,500	16,430	100%	4,350	4,140	95%	20,850	20,570	99 %
5	19,270	18,950	98%	4,060	3,890	96 %	23,330	22,840	98 %
6	17,260	17,110	99 %	3,840	3,760	98%	21,100	20,870	99 %
7	17,260	17,110	99 %	3,840	3,760	98%	21,100	20,870	99 %
8	18,900	18,480	98%	3,650	3,570	98%	22,550	22,050	98 %
9	15,930	15,750	99 %	3,260	3,220	99 %	19,190	18,970	99 %
10	14,980	14,650	98%	3,260	3,220	99 %	18,240	17,870	98 %
Ш	14,810	14,560	98%	١,760	1,810	103%	16,570	16,370	99 %
All	17,010	16,830	99 %	3,900	3,770	97%	20,910	20,590	98 %

HOV Summary

- A simple HOV choice model was calibrated to achieve desired HOV volumes on HOV facilities
 - Low overall assignment for Shirley Highway prevents estimated HOV volumes from matching counts without estimated LOV volumes being off-target from counts
- Additional count detail required to better calibrate HOV choice model parameters
 - Difference between validation of peak period and daily HOV volumes to be considered in calibration
- HOV choice model is integrated into the overall model stream and with HOT lane modeling

HOT Lane Modeling Goals

- Enhance current highway assignment
 - Replace "two-step" with a full multi-class assignment
 - Utilize proposed HOV modeling
 - Include dynamic toll setting in the standard model
 - Determine HOT lane tolls as part of highway assignment
 - Streamline highway assignment
 - Utilize CUBE cluster efficiently (MDP & IDP)
 - Minimizing repetition of common code
- Improve overall highway assignment runtime

Current HOT Lane Model

Current HOT Lane Toll Setting

Current Toll Groups

- 134 toll groups
- Two types:
 - Static (red)
 - Dynamic (green)
- Groups formed with contiguous links
- Each is adjusted independently

HOT Lane Modeling Changes

- Current Process
 - Fixed Toll Model
 - Two full model runs
 - Total = ~40 hours
 - Toll Setting Model
 - Two full model runs (~40 hours)
 - Toll setting process
 (~30 hours+)
 - Final full model run (~20 hours)

Total = 90 hours (~4 days)

- Proposed Process
 - Fixed Toll Model
 - Single full model run
 Estimated ~1 day
 - Dynamic Toll Model
 - Single full model run
 - "Progressive" gap

Estimated ~I + days

- Full Toll Setting Model
 - Single full model run with enhanced toll-search

Estimated 2-5 days

AECOM

Proposed HOT Lane Model

* Fixed tolls or outputs from the toll setting process of the previous global iteration * Two levels of toll setting convergence criteria and search methods

Toll Choice in Assignment

AECOM

Model Runtime Considerations

- Compute-intensive due to iterative toll-setting
 - Each highway assignment takes ~2 hours @ 0.001 gap
 - "Progressive" gap criteria can reduce runtime
- The key factor in toll-setting efficiency:
 - Minimize optimal-toll search loops
 - Limit number of loops
 - Use good starting "seed" tolls
 - Smart logic
 - Protect against infinite loops
 - Aggregate toll groups
 - Reduce combinations to evaluate

TRNBUILD to PT Conversion

- Background
 - Evaluated issues in converting from TRNBUILD to PT
 - Developed scripts to convert TRNBUILD routes to PT
 - Tested PT procedures for generating access links
- Recent Progress
 - MWCOG converted the TRNBUILD routes to PT
 - Added transit-only links to the highway network
 - Implemented PT Generate processes to develop walk access, P&R access and K&R access links
 - Compared PT generated paths with TRNBUILD paths

Key Differences

TRNBUILD	РТ
Station nodes and links are part of a transit-only network	Station nodes and links are part of a single multi-modal network
Transit-only nodes and links (LINK, SUPPLINK, XY data) added during path-building	Transit-only nodes and links are part of the master network
Transit paths are a series of links between origin and destination zones	Transit paths are a set of legs between transit stops or between a transit stop and a zone centroid
Paths may include multiple non- transit links	No consecutive non-transit legs in a path

Path Differences

- TRNBUILD
 - Zone X to Node Y using Mode 16 link
 - Node Y to Node Z using Mode 13 link
 - Node Z to Station A using Mode 12 link
 - Station A to Station B using Route X
 - Station B to Station C using Mode 12 link...

• PT

- Zone X to Station A using Non-Transit Leg E
 - walk path from X to A using "E" constraints
- Station A to Station B using Route X
- Station B to Station C using Non-Transit Leg F
 - Walk path from B to C using "F" constraints

Generating Non-Transit Legs

- PT Generate statement builds non-transit legs between zones and stops using "permitted" links
 - Walk access legs
 - Zone centroids to bus stops using links that permit walking
 - Zone centroids to stations...
 - Bus stops to stations...
 - Bus stops to bus stops...
 - Kiss-n-Ride access legs
 - Zone centroids to stations using auto links and travel times
 - Park-n-Ride access legs
 - Zone centroids to stations passing through a park-n-ride lot

Station Connection Options

- Need to connect Metrorail and commuter rail stations to the highway/transit network
 - Manual Coding
 - One-time task, ensure feasibility of connector links
 - Connect each station to the station centroid
 - Only one connection, may not be appropriate for walk access
 - Connect stations to nearest "N" nodes
 - Spatial analysis does not consider physical barriers
 - Recode existing access generation programs to output data in PT network format
 - Contrary to the "spirit" of PT

Next Steps

- HOV model
 - Document the results and propose additional data collections for calibration purposes
- HOT lanes model
 - Implement additional process performance tests
 - Propose a reduced number of toll groups
- PT conversion
 - Connect stations to the highway network
 - Develop scripts to generate "useful" non-transit leg modes (e.g., walk, PNR, KNR, bus-rail transfer, etc.)