HIGHWAY AND TRANSIT NETWORKS

Used in the Air Quality Conformity Analysis of the 2022 Update to Visualize 2045 and the FY 2023-2026 TIP (Gen2/Ver. 2.4 Travel Model)

June 15, 2022

June 15, 2022

About the TPB

The National Capital Region Transportation Planning Board (TPB) is the federally designated Metropolitan Planning Organization (MPO) for metropolitan Washington. It is responsible for developing and carrying out a continuing, cooperative, and comprehensive transportation planning process in the metropolitan area. Members of the TPB include representatives of the transportation agencies of the states of Maryland and Virginia and the District of Columbia, 23 local governments, the Washington Metropolitan Area Transit Authority, the Maryland and Virginia General Assemblies, and nonvoting members from the Metropolitan Washington Airports Authority and federal agencies. The TPB is staffed by the Department of Transportation Planning at the Metropolitan Washington Council of Governments (COG).

About COG

The Metropolitan Washington Council of Governments (COG) is an independent, nonprofit association that brings area leaders together to address major regional issues in the District of Columbia, suburban Maryland, and Northern Virginia. COG's membership is comprised of 300 elected officials from 24 local governments, the Maryland and Virginia state legislatures, and U.S. Congress.

About Visualize 2045

Visualize 2045 is the federally required long-range transportation plan for the National Capital Region. It identifies and analyzes all regionally significant transportation investments planned through 2045 to help decision makers and the public "visualize" the region's future. Visualize 2045, developed by the TPB, was first developed in 2018 and was updated in 2022.

Credits

Director of COG's Department of Transportation Planning (DTP): Kanti Srikanth Director, Travel Forecasting and Emissions Analysis, DTP: Mark Moran Editors: Meseret Seifu and Jane Posey Contributing Editors: Feng Xie, Jim Yin, Wanda Owens, Joseph Davis, William Bacon, Ray Ngo, Anant Choudhary, Sanghyeon Ko, and Mark Moran Oversight: COG/TPB Travel Forecasting Subcommittee

Acknowledgements

This publication was funded, in part, by grants from the District of Columbia Department of Transportation, the Maryland Department of Transportation, the Virginia Department of Transportation, the Federal Highway Administration and the Federal Transit Administration. The material herein does not necessarily reflect the views of the sponsoring agencies.

Accommodations Policy

Alternative formats of this document are available upon request. Visit <u>www.mwcog.org/accommodations</u> or call (202) 962-3300 or (202) 962-3213 (TDD).

Title VI Nondiscrimination Policy

The Metropolitan Washington Council of Governments (COG) fully complies with Title VI of the Civil Rights Act of 1964 and related statutes and regulations prohibiting discrimination in all programs and activities. For more information, to file a Title VI related complaint, or to obtain information in another language, visit <u>www.mwcog.org/nondiscrimination</u> or call (202) 962-3300.

El Consejo de Gobiernos del Área Metropolitana de Washington (COG) cumple con el Título VI de la Ley sobre los Derechos Civiles de 1964 y otras leyes y reglamentos en todos sus programas y actividades. Para obtener más información, someter un pleito relacionado al Título VI, u obtener información en otro idioma, visite www.mwcog.org/nondiscrimination o llame al (202) 962-3300.

Copyright © 2022 by the Metropolitan Washington Council of Governments

Table of Contents

1	Intr	oduction	5
	1.1	Air Quality Conformity Process	7
	1.2	Network Development Program Overview	8
	1.3	Report Structure	9
2	TDR	Transportation Network Background	10
2			
	2.1	Modeled Area	10
	2.2	Time-of-Day Considerations	10
	2.3	Zone Area System	12
	2.4	Highway Network Elements	18
	2.5	Transit Network Elements	19
	2.6	Overview of Network Travel Costs	20
	2.7	Node Numbering System	21
3	Cub	e Voyager Network Inputs	25
		Cost Deflation Inputs	
	5.1	UOSE Dellation induis	
	3.1	-	
	3.2	Highway Network Files	28
	3.2 3.2.1	Highway Network Files Zonal land use	28 29
	3.2 3.2.1 3.2.2	Highway Network Files Zonal land use Highway Link and Node Coordinate Files	28 29 30
	3.2 3.2.1 3.2.2 3.2.3	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable	28 29 30 32
	3.2 3.2.1 3.2.2 3.2.3 3.2.4	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes	28
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File	28
	3.2 3.2.1 3.2.2 3.2.3 3.2.4	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines	28 30 32 34 37 49
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines	28 30 32 34 37 49 51
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines Highway Statistics from the 2022 Update to Visualize 2045	28 30 32 34 49 51
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines Highway Statistics from the 2022 Update to Visualize 2045 Transit Network Files Transit and Non-Transit Mode Codes	28
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines Highway Statistics from the 2022 Update to Visualize 2045 Transit Network Files Transit and Non-Transit Mode Codes Rail Station File	28
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.2	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines Highway Statistics from the 2022 Update to Visualize 2045 Transit Network Files Transit and Non-Transit Mode Codes Rail Station File Walk- and Drive-Access to Transit	28 30 32 34 37 49 51 51 55 59 61
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.2 3.3.3	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines Highway Statistics from the 2022 Update to Visualize 2045 Transit Network Files Transit and Non-Transit Mode Codes Rail Station File Walk- and Drive-Access to Transit	28 30 32 34 37 49 51 54 55 59 61 66
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.2 3.3.3 3.3.4	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines Highway Statistics from the 2022 Update to Visualize 2045 Transit Network Files Transit and Non-Transit Mode Codes Rail Station File Walk- and Drive-Access to Transit Station Coordinate Files Transit Parking Lot Coordinate Files	28 30 32 34 49 51 54 55 59 61 66 66
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.2 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines Highway Statistics from the 2022 Update to Visualize 2045 Transit Network Files Transit and Non-Transit Mode Codes Rail Station File Walk- and Drive-Access to Transit Station Coordinate Files Transit Parking Lot Coordinate Files Rail Links	28
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines Highway Statistics from the 2022 Update to Visualize 2045 Transit Network Files Transit and Non-Transit Mode Codes Rail Station File Walk- and Drive-Access to Transit Station Coordinate Files Transit Parking Lot Coordinate Files Rail Links Transfer Links	28
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines Highway Statistics from the 2022 Update to Visualize 2045 Transit Network Files Transit and Non-Transit Mode Codes Rail Station File Walk- and Drive-Access to Transit Station Coordinate Files Transit Parking Lot Coordinate Files Rail Links Transit Line/Route Files	28 30 32 34 49 51 54 55 59 61 66 66 66 66 68 69
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8	Highway Network Files Zonal land use Highway Link and Node Coordinate Files Roadway functional classification and the facility-type variable Other link attributes Toll Parameter File Highway Network Screenlines Highway Statistics from the 2022 Update to Visualize 2045 Transit Network Files Transit and Non-Transit Mode Codes Rail Station File Walk- and Drive-Access to Transit Station Coordinate Files Transit Parking Lot Coordinate Files Rail Links Transit Line/Route Files Example of network coding	28 30 32 34 49 51 54 55 59 61 66 66 66 67 68 69 71

	3.5	Transit Fare Files	81
	3.5.1 3.5.2		
4		G/TPB Multi-Year, Multi-Modal Unified Geodatabase	
	4.1	Unified Geodatabase Overview	93
	4.2	Difference between TRNBUILD and PT networks	95
	4.3	Recent Changes to the Database and/or COGTools	97
	4.4	Unified Geodatabase COGTools	99
	4.5	Unified Geodatabase Tables: Overview and Highway Network Tables	102
	4.6	Unified Geodatabase Tables: Transit Network Tables	109
	4.7	General Transit Feed Specification (GTFS) Data	112

List of Tables

Table 1-1 Schedule for the 2022 Update to the Visualize 2045 plan and FY 2023-2026 TIP	3
Table 2-1 Jurisdictional summary of 3,722 TPB TAZ ranges14	1
Table 2-2 Differences between COG TAZ and TPB TAZ area systems19	
Table 2-3 TAZ/node numbering system overview	2
Table 2-4 Node numbering system for transit nodes	2
Table 2-5 Allocated highway node ranges by jurisdiction	3
Table 3-1 Listing of highway network input files	3
Table 3-2 Format description of the land use file (zone.dbf)29	9
Table 3-3 Round 9.2 Cooperative Forecasts regional totals by year	
Table 3-4 Base highway link file description (link.dbf))
Table 3-5 : Highway node file description	L
Table 3-6: Limit codes	
Table 3-7 Area-type codes, from 1 to 7, based on population and employment density	5
Table 3-8 The six area-type codes and examples of each area type	5
Table 3-9 Toll parameter file (Toll_esc.dbf)40)
Table 3-10 Dulles Toll Road (VA 267): Toll links42	2
Table 3-11 Dulles Greenway Toll inks (Segments 1-4)44	1
Table 3-12 Dulles Greenway Toll inks (Segments 5-8)45	5
Table 3-13 Harry W. Nice Bridge toll links45	5
Table 3-14 Toll Summaries: Year 2021 and 2023 (Visualize 2045 plan)46	5
Table 3-15 Toll Summaries: Year 2025 and 2030 (Visualize 2045 plan)47	7
Table 3-16 Toll Summaries: Year 2040 and 2045 (Visualize 2045 plan)48	
Table 3-17 AM lane-miles for the 2022 Update to Visualize 2045 highway networks by Jurisdiction	
Table 3-18 AM lane-miles for the 2022 Update to Visualize 2045 highway networks by Facility Type53	3

Table 3-19 Listing of transit network input files	54
Table 3-20 Transit mode codes	56
Table 3-21 Transit agencies in the Washington, D.C. area (TPB modeled area)	57
Table 3-22 Equivalency between transit modes and transit service	58
Table 3-23 Non-transit mode codes used in TRNBUILD	59
Table 3-24 Variables in the transit station file (Station.dbf) (updated10-22-21)	60
Table 3-25 Transit access distance codes (NCT)	60
Table 3-26 Station centroid and station node range by mode	61
Table 3-27 Header section for each transit route in a transit line file	71
Table 3-28 AM peak-period Metrorail line summary by year: 2021, 2023, 2025, 2030 and 2040	74
Table 3-29 Off-peak period Metrorail line summary by year: 2021, 2023, 2025, and 2030	75
Table 3-30 AM peak-period commuter rail summary by year: 2021, 2023, 2025, 2030 and 2040	76
Table 3-31 Off-peak-period commuter rail summary by year: 2021, 2023, 2025, 2030 and 2040	77
Table 3-32 AM peak-period light rail, BRT, streetcar summary by year: 2021, 2023, 2025, 2030, 2040 and 2045	578
Table 3-33 Off-peak-period light rail, BRT, streetcar summary by year: 2021, 2023, 2025, 2030, 2040, and 2045	579
Table 3-34 Rail centerline and road lane miles	80
Table 3-35 Metrorail fare structure, WMATA Tariff #39	83
Table 3-36 File format: File relating bus fare zones to TAZs and Metrorail stations (TAZFRZN.ASC)	88
Table 3-37 AM Peak and Off-Peak Bus Fare Matrix between MWCOG Fare Zones (Expressed in 2021 cents)	89
Table 3-38 Listing of Transit Fare Input Files	91
Table 4-1 Comparison of Non-Transit Links Between TRNBUILD and PT Networks	96
Table 4-2 Updates made to the geodatabase and COGTools	97
Table 4-3 Network Links Feature Class table with "Link Type" codes (1-16) description	105
Table 4-4 Network Nodes Feature Class table with "Node Type" codes (1-13) description	106
Table 4-5 Base Links Table with "Mode" codes (1-16) description	107
Table 4-6 Transit Links Table	110
Table 4-7 Transit Route Stops Table	110
Table 4-8 Transit Lines Definition Table	111
Table 4-9 GTFS files	113
Table 4-10 Availability of GTFS data for transit providers in the Washington, D.C. area (TPB modeled area)	114

List of Figures

Figure 2-1 COG/TPB modeled area – 3,722-zone area system (TPB planning area shown in gray)	11
Figure 2-2 Location of external stations in the modeled area	16
Figure 2-3 Location of external stations in Baltimore Beltway area	17
Figure 3-1 Cost deflation parameter file (CPI_File.txt)	26
Figure 3-2 Projected CPI escalation at varying annual growth rates	27
Figure 3-3 Deflation process in the Gen2/Version 2.4 Travel Model	27
Figure 3-4 Highway network building process	28
Figure 3-5 Classification of roads and their emphasis on mobility and access	33
Figure 3-6 Example of different types of roads	34

Figure 3-7 Map of the six area types	37
Figure 3-8 Existing and the Visualize 2045 Plan 2022 Update Managed-lane facilities in the regional highway	
networks	39
Figure 3-9 Dulles Toll Road: Toll facilities locations	41
Figure 3-10 Dulles Greenway: Toll facilities locations (Map 1 of 2)	43
Figure 3-11 Dulles Greenway: Toll facilities locations (Map 2 of 2)	
Figure 3-12 Highway Network screenlines: Inside the Beltway	49
Figure 3-13 Highway network screenlines: Outside the Beltway	50
Figure 3-14 Process for developing walk-access and drive-access links	
Figure 3-15 An excerpt from the AreaWalk.txt file	63
Figure 3-16 Walk access/egress links in TAZ 56, east of Foggy Bottom Metrorail Station	64
Figure 3-17 Drive-access links associated with the Ballston Metrorail Station PNR lot	
Figure 3-18 Excerpt from the Metrorail station coordinate file (met_node.tb)	66
Figure 3-19 An excerpt of the Metrorail PNR lot coordinate file (met_pnrn.tb)tb)	
Figure 3-20 An excerpt of the Metrorail rail link file (met_link.tb)	68
Figure 3-21 An excerpt from the file (met_bus.tb) containing transfer links (mode 12) between Metrorail station	ns
and bus stops	69
Figure 3-22 Example of a transit line/route file in TRNBUILD (TB) format	70
Figure 3-23 Existing MWCOG/TRNBUILD convention for network coding around rail stations, park-and-ride lots,	,
and bus service	72
Figure 3-24 Process for conducting transit path building	81
Figure 3-25 Metrorail fares (peak and off-peak) and the rail-to-bus discounts (Tariff.txt)	83
Figure 3-26 Regional Primary Bus Fare Zone Map	85
Figure 3-27 Regional Secondary Bus Fare Zone Map	86
Figure 3-28 Combine bus fare zones (primary overlaid with secondary)	87
Figure 3-29 Process for developing zone-to-zone transit fares	90
Figure 4-1 Relationship Between the network unified geodatabase and the Cube Voyager/PT Modeling Process	95
Figure 4-2 TPB Unified Geodatabase Structure	.102
Figure 4-3 Process for combining GTFS data into the COG Geodatabase	.116

1 Introduction

The National Capital Region Transportation Planning Board (TPB) is the federally designated Metropolitan Planning Organization (MPO) for the Washington, D.C. metropolitan area and is also one of several policy boards that operate at the Metropolitan Washington Council of Governments (COG). The COG/TPB staff develops and maintains, with consultant assistance, a series of regional travel demand forecasting models to support the regional transportation planning process in the metropolitan Washington region. One of the critical inputs to the regional travel demand forecasting model is a series of transportation networks, which represent both the highway (road) system and the transit system in the Washington, D.C. area. Transportation networks depict the highway and transit system for a series of discrete years, typically an existing "base" year and several forecast years. Transportation networks are used in the travel model to formulate impedances (travel times and costs) between origins and destinations. The travel model considers impedances as a basis for estimating the number of person trips that travel between zones and for allocating those person trips among specific modes of travel. Transportation networks also provide a basis upon which the performance of the existing and planned regional transportation system may be evaluated. The TPB Gen2/Version 2.4 Travel Model is the first member of a family of trip-based, "four-step" travel demand models, known as "Version 2.4," which, in turn, is a member of a series of trip-based models known as Generation 2 (Gen2). Transportation networks are prepared with attention to several technical requirements:

- Networks are designed to represent the major transportation facilities and services that are relevant to the regional level of analysis. Thus, many of the smaller scale facilities, such as local roads, are purposefully excluded;
- Networks are designed to conform to a detailed area (or zone) system that is specifically designed for regional modeling. The existing area system for the Washington, D.C. area consists of 3,722 transportation analysis zones (TAZs);
- Networks are designed to meet the specific technical requirements of the Gen2/Version 2.3 family of travel demand models. The travel model currently requires network inputs that are used to develop travel highway and transit impedances between zones. The travel model requires modal travel impedances associated with both peak and off-peak operating conditions; and
- Networks are prepared in a format that is compliant with the specific requirements of the software platform that is currently used to apply the model. The Gen2/Version 2.4 Travel Model is currently implemented with Bentley Systems Cube software (Bentley Systems acquired Citilabs in 2020).

Because of the technically specialized nature of the model's transportation networks, substantial staff resources are required to develop and manage these travel model inputs each year. The network development activity is included in the TPB's Unified Planning Work Program (UPWP) under the Travel Forecasting major work activity. Network development includes an annual update of the current-year highway and transit networks with the most up-to-date information, as well as the development of future-year networks that represent the TPB's continuously evolving Long-Range Transportation Plan

(LRTP), currently known as "Visualize 2045," and the Transportation Improvement Program (TIP), which is a four-year subset of the LRTP.

The network development activity also supports other elements of the work program, including Mobile Emissions Planning and Technical Assistance, which encompass subarea and corridor studies conducted by both TPB staff and state/local planning agencies.

This technical report documents the travel demand model transportation networks that were used in the recent Air Quality Conformity (AQC) analysis of the 2022 Update to the Visualize 2045 plan and the FY 2023-2026 Transportation Improvement Program (TIP), which is to be considered for approval by the TPB on June 15, 2022.

Visualize 2045 includes both a financially constrained element and an aspirational element. The constrained element includes projects that the region's transportation agencies expect to be able to afford between now and 2045, and the aspirational element goes beyond financial constraints. The air quality conformity analysis is conducted for only the financially constrained element, and most references to the Visualize 2045 plan in this document refer to only that component.¹

As stated earlier, transportation network files are developed in compliance with the adopted travel demand model and its associated software. The currently adopted, production-use TPB travel demand model is known as the Generation 2/Version 2.4. The travel model uses an area system with 3,722 TAZs and is currently applied using Bentley Systems Cube software (Version 6.4.1). Transit path-building is accomplished using a module of Cube Voyager called TRNBUILD. Cube Voyager also contains a newer transit path-building module called Public Transport (PT). One of the features of PT is the ability to trace transit paths graphically, on-screen, over a transit map (TRNBUILD included only text-based reports of transit paths). There is a possibility that the Generation 3 (Gen3) Travel Model that is currently under development may transition from the older transit path builder (TRNBUILD) to the newer transit path builder (PT). Currently, COG/TPB staff is developing a unified network database (containing both TRNBUILD and PT components) to support both the Gen2 and Gen3 travel demand models.

This report describes the process, technical conventions and specifications associated with the TPB's network-related inputs to the travel model. There are other supporting documents that are directly related to the 2022 Update to the Visualize 2045 Plan and the FY 2023-2026 TIP network development process and specifications, including: 1) the air quality conformity analysis report,² which includes a complete listing of all transit and highway projects assumed in the 2022 Update to the Visualize 2045

¹ See, for example, the previous analysis: "Air Quality Conformity Analysis of the 2020 Amendment to Visualize 2045, Full Report" (Washington, D.C.: National Capital Region Transportation Planning Board, Metropolitan Washington Council of Governments, March 18, 2020), <u>https://www.mwcog.org/documents/2020/03/31/air-quality-conformity-analysis-of-the-2020-amendment-to-visualize-2045-full-report/</u> Project inputs in Appendix B.
² Jane Posey, "Air Quality Conformity Analysis of the 2022 Update to Visualize 2045," Full Report (Washington, D.C.: National Capital Region Transportation Planning Board, Metropolitan Washington Council of Governments, and the 2022 Update to Visualize 2045," Full Report (Washington, D.C.: National Capital Region Transportation Planning Board, Metropolitan Washington Council of Governments,

expected June 15, 2022).

plan and the FY 2023-2026 TIP; and 2) the Gen2/Version 2.4 User's Guide,³ which documents the overall model application process. The user's guide and other important model documentation can be found on the "Model Documentation" web page.⁴

The remainder of this chapter provides an overview of the TPB's network development process and its connection with the annual Air Quality Conformity process.

1.1 Air Quality Conformity Process

One of the primary goals of TPB's network development program is to furnish base- and forecast-year highway and transit networks for the Air Quality Conformity Analysis of the region's Long-Range Transportation Plan (LRTP) and the Transportation Improvement Program (TIP), which is done to determine whether air pollution from motor vehicles (referred to as "on-road mobile emissions") that use roads represented in the TIP and the LRTP conform to state implementation plans (SIPs) designed to ensure that mobile emissions do not exceed approved mobile emissions budgets regarding prevailing air quality standards set by federal law. LRTPs must be updated every four years, but the air quality conformity analysis often happens on a more frequent basis, such as every two years. The analysis includes the formulation of travel demand forecasts and associated mobile source emissions inventories for a set of milestone years. TPB staff typically collects TIP and LRTP transportation (District of Columbia Department of Transportation [DDOT], Maryland Department of Transportation [MDOT] and Virginia Department of Transportation [VDOT]), the Washington Metropolitan Area Transit Authority (WMATA or Metro), the Maryland Transit Administration (MTA), the Virginia Railway Express (VRE), and other local transit service providers on a biennial basis.⁵

The 2022 Update to Visualize 2045 plan air quality conformity schedule is shown in Table 1-1.

³ Ray Ngo, Feng Xie, and Mark S. Moran, "User's Guide for the COG/TPB Gen2/Version 2.4 Travel Demand Forecasting Model" (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, March 15, 2021), https://www.mwcog.org/transportation/data-and-tools/modeling/model-documentation/.

⁴ "Model Documentation," Metropolitan Washington Council of Governments, 2021,

http://www.mwcog.org/transportation/activities/models/documentation.asp.

⁵ Although the modeled area, and thus the transportation networks, include one county in West Virginia (Jefferson Co.), the TPB model networks include only current-year roads in this county, not future-year roads.

Year	Month	Event					
2020	December	Technical Committee briefed on request for TIP and Plan updates					
2021	March	Technical Committee briefed on draft project inputs and draft air quality conformity Scope of Work					
		TPB briefed on draft project inputs and draft air quality conformity Scope of Work					
	April	MWAQC TAC briefed on inputs and Scope of Work					
	June	TPB reviewed and approved inputs and draft Scope of Work					
2022	April	Draft FY2023-2026 TIP, 2022 Update to the Visualize 2045 Plan,					
		and air quality conformity analysis released for 30-day public comment period					
		Technical Committee reviewed draft TIP, Plan, and conformity analysis					
		MWAQC TAC briefed on draft TIP, Plan, and conformity analysis					
		TPB briefed on draft TIP, Plan, and conformity analysis					
	June	TPB reviewed and responded to comments					
		TPB approved the FY 2023-2026 TIP, the 2022 Update to the Visualize 2045 Plan					
		and the air quality conformity analysis					

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report tables\2022 Update to Viz 2045 Schedule.xlsx"

The air quality conformity (AQC) analysis of the 2022 Update to Visualize 2045 plan included the following six networks: 2021, 2023, 2025, 2030, 2040, and 2045. A 2017 network was also developed for data requests, even though it was not an analysis year in the air quality conformity analysis.

1.2 Network Development Program Overview

Network development activities are carried out in a way that accommodates the air quality conformity determination schedule. Federal law requires that the LRTP be updated every four years. However, in the Washington, D.C. area, the LRTP has typically been updated on a more frequent basis (such as annually, or every two years), which means that the air quality conformity process has also been conducted on a more frequent basis than the federally required four-year cycle. The Visualize 2045 LRTP, developed in 2018, represents the "quadrennial" update of the Plan. A quadrennial update is considered a major update of the plan. The 2022 Update to Visualize 2045 plan was a quadrennial update. It included a complete financial analysis, a performance analysis, and an extensive public outreach.

One of the key objectives of the network development program is to prepare regional network inputs to the travel model in time for travel modeling work to proceed during the spring. The following procedure has typically been followed each year:

 Pre-existing network inputs developed for the previous year's air quality analysis, and the previous TIP and LRTP, are obtained as a starting point for highway network coding. For example, the inputs for the 2022 update to Visualize 2045 plan were built from the previously developed 2020 Amendment to Visualize 2045 plan analysis inputs. The TPB's link and node network data are currently stored in a multi-year and multi-modal (highway and transit) Personal Geodatabase. TPB staff essentially develops a single multi-year database for each LRTP.⁶

- 2) The pre-existing highway networks are subject to ongoing review and updates, such as when errors are detected by either TPB staff or external users of the regional travel model. These types of updates are incorporated into the current-year TIP and LRTP network database throughout the year.
- 3) The transit network "base-year" data is refreshed with each regular LRTP update with the latest schedule information provided by the local operators and provides the starting point for transit coding each year. Most of the transit schedule information is obtained from digital, machine-readable files, though some agencies do not produce machine-readable schedule information. The base-year transit data generally represent the state of the transit service in effect during the fall, when schedule information is collected by TPB staff, and is the foundation upon which the forecast year transit networks are built. However, because staff did not want the forecast year networks built upon a foundation that reflected COVID service cutbacks, staff used 2020 pre-COVID service for the network base year in the air quality analysis of the 2022 update to Visualize 2045.
- 4) The current year TIP and LRTP network elements (both highway and transit) are collected from the state and local implementing agencies and coded into the network. The coded projects are those considered to be "regionally significant," as defined by the TPB.⁷

Other miscellaneous and policy-related network inputs that are not currently stored in the Unified geodatabase are prepared for each milestone year. Network development activities also address the production of networks required for special project-planning studies, as well as the development of specialized inputs supporting the TPB's Model Development activities. This report focuses on the data and conventions used to construct the 2022 update to the Visualize 2045 and FY 2023-2026 TIP networks.

1.3 Report Structure

The remainder of this report addresses the structure and conventions of the TPB travel model transportation networks in greater detail. Chapter 2 presents the foundational elements of the TPB's transportation networks, such as the zonal area system underpinning the network and the components of the regional highway network. Chapter 3 describes the individual network files that are prepared for the transportation model and the attributes that are contained in each file. Chapter 4 describes the unified geodatabase that is currently used to maintain the regional network data. The database has been specially designed to consolidate network-related information within a multi-year and multi-modal framework, containing both TRNBUILD and Cube Public Transport (PT), in a geographically referenced

⁶ Networks exported from this database should be consistent with each other, whereas networks exported from different geodatabases will not necessarily be consistent with each other, so it is generally not a good idea to mix networks from two different geodatabases.

⁷ Memorandum from Jane Posey to TPB Technical Committee, Subject: Defining Regional Significance for Conformity, October 6, 2011.

framework. Although the unified geodatabase contains both TRNBUILD and PT components, this report focuses on network inputs of the Ver. 2.4 Travel Model used in the AQC analysis of the 2022 update of the LRTP.

2 TPB Transportation Network Background

This chapter presents background on the travel model transportation networks that are developed by TPB staff, including a description of the "modeled area," a review of the zone system that underlies the networks, and the time-of-day period definitions that are represented. The basic elements associated with highway and transit networks are described, along with a review of network location (node) numbering. This chapter also presents an overview of the specific travel costs that are developed in the TPB networks and considered in the regional travel model.

2.1 Modeled Area

A map of the TPB modeled area is shown in Figure 2-1. The area covers 6,800 square miles and includes 22 jurisdictions spanning the District of Columbia, Northern Virginia, suburban Maryland, and one county in West Virginia.⁸ The modeled area extends well beyond the current TPB planning area, which is shown as the shaded area in Figure 2-1.

2.2 Time-of-Day Considerations

The travel model requires zonal travel times and costs for both peak and off-peak conditions because congestion levels experienced by different travel markets vary substantially over an average weekday. Thus, the travel model networks developed by TPB staff correspond to either peak or off-peak conditions.

Many of the primary highway facilities in the region operate with varying configurations during peak and off-peak hours of the day. Examples of operational changes include:

- High-Occupancy Vehicle (HOV) priority lanes/facilities: Freeways with diamond lanes or exclusive lanes that are dedicated to HOVs. Many HOV priority lanes operate in the peak-flow direction during peak periods and revert to general-purpose lanes during the off-peak hours;
- Facilities with reverse-direction lanes: Several roads operate with varying directional lane configurations during the morning and evening time periods to better serve the peak-flow direction of traffic (e.g., The Theodore Roosevelt Bridge, which has a reversible lane). Some facilities operate entirely in one direction during rush periods and revert to two-way configurations during the off-peak; and

⁸ The term "jurisdiction" includes both counties (e.g., Arlington County) and major cities (e.g., the City of Alexandria and Washington, D.C.). One of the 22 jurisdictions, Spotsylvania County, is only partially included in the modeled study area- the northern portion approximately north of VA 606. All other jurisdictions are fully included in the study area.

• Some facilities do not change in operation during the day, but are available only to special markets, such as autos only or airport-bound trips.

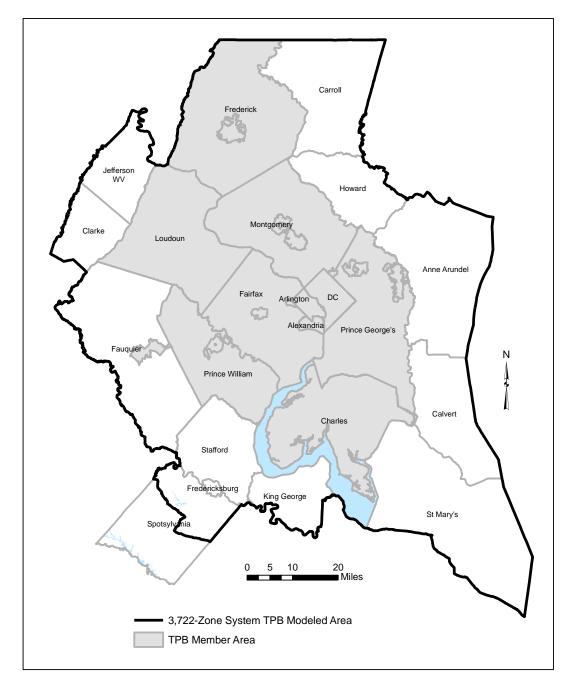


Figure 2-1 COG/TPB modeled area – 3,722-zone area system (TPB planning area shown in gray)

Note: The TPB planning area includes the urbanized portion of Fauquier County.

Ref: "I:\ateam\docum\fy19\V2.3.75_Visualize2045NetworkReport\Jur_Map.emf"

The following time-period definitions are used for the highway network:

- AM peak period (3 hours: 6:00 AM to 9:00 AM)
- Midday period (6 hours: 9:00 AM to 3:00 PM)
- PM peak period (4 hours: 3:00 PM to 7:00 PM)
- Night/early morning period (11 hours: 7:00 PM to 6:00 AM)

Although traffic assignment is conducted for four time-of-day periods (AM peak period, midday, PM peak period, and nighttime), the trip distribution and mode choice steps operate with travel times and costs developed from the AM peak period and midday period only.⁹

The highway network distinguishes these special operations by using facility-specific attributes that change by time-of-day period. These attributes include directional lanes and codes that enable or disable the use of a specific facility to specific travel markets (e.g., HOV traffic). Highway costs (tolls) on specific facilities are also coded differentially by time-of-day period.

The operational differences reflected in the regional highway networks pertain essentially to high-level facilities (freeways and principal arterials). While numerous operational differences between time periods exist on minor arterials and collectors, many of these are not reflected in TPB networks. For example, TPB highway networks do not contain information about turn prohibitions or parking restrictions), which are below the grain of the regional network.

Like the highway network, the level of transit service in the Washington, D.C. region varies substantially during the average weekday. Consequently, transit networks prepared for the travel model provide a representation of **peak** and **off-peak** service. For each modeled transit route, an average headway (service frequency) and an average run time (time from start of the route to the end of the route) is calculated for the two time-of-day periods. For the calculation of average headways and run times, the **peak period** is represented by the AM peak hour (7:00-7:59 AM) and the **off-peak** period is represented by the six-hour midday period (9:00 AM to 2:59 PM). The AM period definition is reasonably representative of most peak/commuter service but may not be adequate to represent peak-period service operating in the outer reaches of the region. Consequently, the peak frequencies and run times for express bus and local bus service in some "outer" jurisdictions are developed using an earlier peak-hour definition which is more representative of peak conditions. The specific peak hour selected is based on the professional judgment of the network coder.

2.3 Zone Area System

Transportation Analysis Zones (TAZs) represent the basic geographic unit by which regional highway and transit travel flows are estimated by the travel demand model. The TAZ system is important to the overall network design because TAZs delineate the finest level of spatial resolution that can be supported by the land activity inputs, and hence the travel model. Consequently, the highway and

⁹ Ray Ngo et al., "User's Guide for the COG/TPB Gen2/Version 2.4 Travel Demand Forecasting Model" (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, March 15, 2021, chap. 13, https://www.mwcog.org/transportation/data-and-tools/modeling/model-documentation/.

transit facilities represented in the regional network are purposefully designed to conform around each TAZ as closely as possible.

The existing modeled area is subdivided into 3,722 TAZs. The zone system includes 3,675 internal TAZs and 47 external stations, which represent points of entry to, and exit from, the modeled area. The 3,722-TAZ system has been in existence since 2009 and has been designed to provide a greater level of resolution in concentrated areas of development known as "activity centers." These concentrated areas were identified by COG's Metropolitan Development Policy Committee in 2007 as a basis for encouraging mixed use development and as an aid for improving the coordination of land use and transportation planning.

The 3,722 TAZ system numbering has been developed on a jurisdictional basis as shown in Table 2-1. Each modeled jurisdiction incorporates cities within their boundaries. Fairfax County includes the City of Fairfax and the City of Falls Church (which are independent cities). Similarly, Prince William County includes the City of Manassas and City of Manassas Park. The TAZs within the cities' boundaries are listed below Table 2-1.

The table indicates that the internal TAZs are numbered from 1 to 3675. The external station locations are shown in Figure 2-2 and Figure 2-3. External station numbers are sequenced from 3676 to 3722 and are assigned to highway facilities in a clockwise direction, from Virginia Route 3 station in King George County to US 50/301 (the Chesapeake Bay Bridge) in Anne Arundel County. The table also indicates that 1,278 reserved TAZs are currently available for subzone work. However, changes to the existing TAZ system would require changes to dimensions that are currently specified in application scripts and programs.

The TAZs in Table 2-1 are referred to as "TPB TAZ" to distinguish them from "COG TAZ." In 2008 and 2009, the COG GIS staff developed a new system of TAZs, which had more zones, but did not increase the size of the modeled area. In other words, the new zones were, on average, smaller than the previous zone system, which is useful for better modeling of transit and non-motorized trips. The old zone system had 2,191 TAZs and the new system has 3,722 TAZs. Reviews of the initial 3,722-TAZ system used in the COG Cooperative Forecasting process uncovered some instances where TAZ boundary refinements were needed. The result was that there are now two sets of zones for the 3,722-TAZ area system:

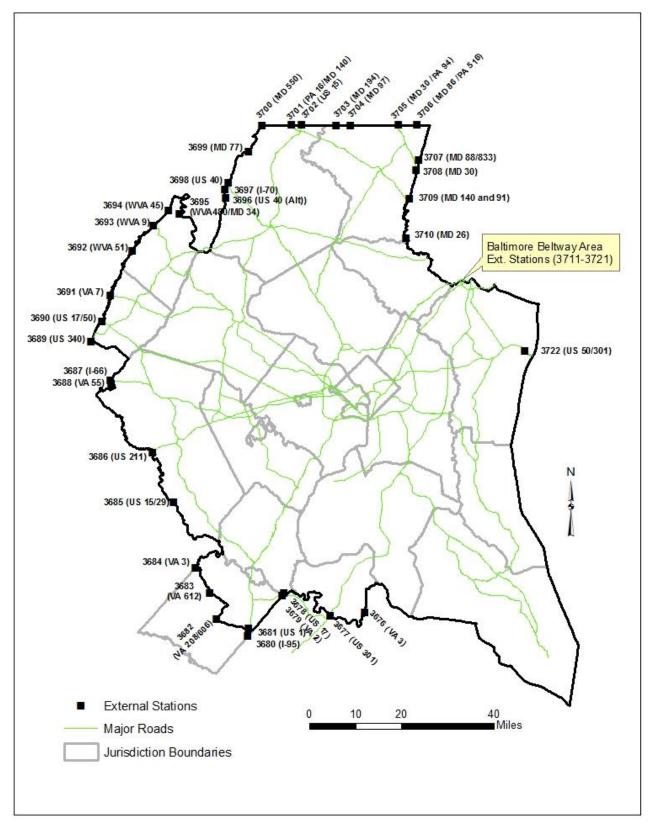
- COG TAZs: For land activity forecasts (COGTAZ3722_TPBMOD)
- TPB TAZs: For transportation modeling (TPBTAZ3722_TPBMOD)¹⁰

The specific differences between the two area systems are detailed in Table 2-2.

¹⁰ Meseret Seifu, "Review of New Zone System: 3722 Transportation Analysis Zones (TAZ)" (January 22, 2010 meeting of the COG/TPB Travel Forecasting Subcommittee, held at the Metropolitan Washington Council of Governments, Washington, D.C., January 22, 2010), 23, http://www.mwcog.org/uploads/committee-documents/Zl5aV1dd20100122152445.pdf.

	Juris.	County FIP	Beginning	Ending	TAZ/Station
Jurisdiction/City	Code	Code	TAZ No.	TAZ No.	Count
District of Columbia	0	1	1	393	393
Montgomery Co., Md.	1	31	394	769	376
Prince George's Co., Md.	2	33	770	1404	635
Arlington Co., Va.	3	13	1405	1545	141
City of Alexandria, Va.	4	510	1546	1610	65
Fairfax Co., Va.		59	1611	2159	549
City of Fairfax	5	600			
City of Falls Church		610			
Loudoun Co., Va.	6	107	2160	2441	282
Prince William Co., Va.		153	2442	2819	378
City of Manassas	7	683			
City of Manassas Park		685			
Frederick Co., Md.	9	21	2820	2949	130
Howard Co., Md.	10	27	2950	3017	68
Anne Arundel Co., Md.	11	3	3018	3116	99
Charles Co., Md.	12	17	3117	3229	113
Carroll Co., Md.	14	13	3230	3287	58
Calvert Co., Md	15	9	3288	3334	47
St. Mary's Co., Md.	16	37	3335	3409	75
King George Co., Va.	17	99	3410	3434	25
City of Fredericksburg, Va.	18	630	3435	3448	14
Stafford Co., Va.	19	179	3449	3541	93
Spotsylvania Co., Va.	20	177	3542	3603	62
Fauquier Co., Va.	21	61	3604	3653	50
Clarke Co., Va.	22	43	3654	3662	9
Jefferson Co., WVa.	23	37	3663	3675	13
Total Internal TAZs					3,675
External Stations:			3676	3722	47
Reserved TAZ numbers			3723	5000	1,278
Note: 13 of the 3675 internal T 61, 382, 770, 777, 2555, 20			8, 3482. 3495.	3544	

Table 2-1 Jurisdictional summary of 3,722 TPB TAZ ranges


Jurisdiction	City	TAZ No.
Fairfax Co., Va.	City of Fairfax	1630-1634, 1785,
		1791-1793, 1796-1801
	City of Falls Church	1920, 1927-1928,
		1933-1934, 1937-1940
Prince William Co., Va.	City of Manassas	2595,2599,2602,2624,
		2627-2628,2630-2632,2637
	City of Manassas Park	263,526,442,646

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\3722TAZ_Master_Node_Table_Jan_2015_V2.4.xlsx"

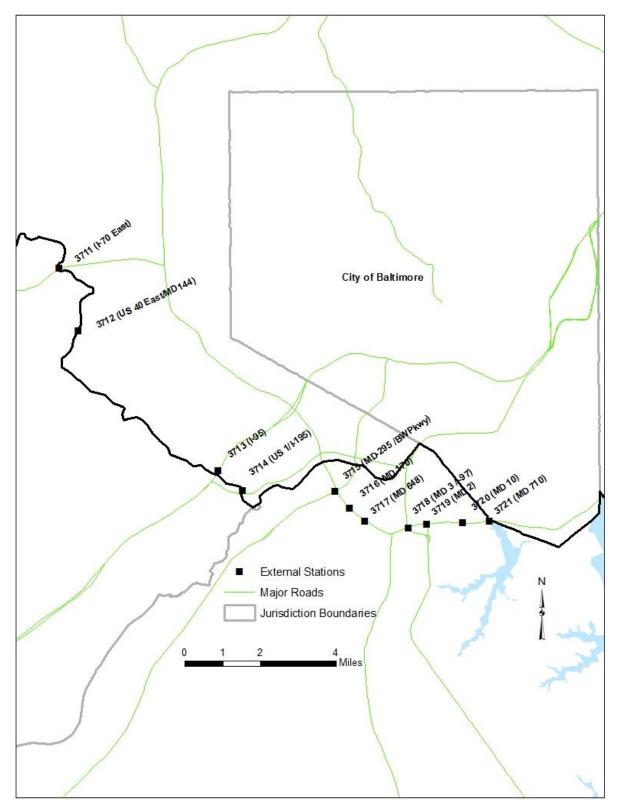

COG TAZ	Jurisdiction	Issue	ТРВ ТАΖ
61	District of Columbia	island/water body	unused TAZ
382	District of Columbia	water body	unused TAZ
770	Prince George's Co., MD	water body	unused TAZ
777	Prince George's Co., MD	water body	unused TAZ
2555	Prince William Co., VA	resolution too fine for regional model	dissolved into TAZ 2554
2629	Prince William Co., VA	resolution too fine for regional model	dissolved into TAZ 2630
3103	Anne Arundel Co., MD	resolution too fine for regional model	unused TAZ
3266	Carroll Co., MD	peninsula/water body	unused TAZ
3267	Carroll Co., MD	water body	unused TAZ
3482	Stafford Co., VA	resolution too fine for regional model	dissolved into TAZ 3489
3478	Stafford Co., VA	resolution too fine for regional model	dissolved into TAZ 3489
3495	Stafford Co., VA	resolution too fine for regional model	dissolved into TAZ 3494
3544	Spotsylvania Co., VA	water body	unused TAZ

Table 2-2 Differences between COG TAZ and TPB TAZ area systems

 $Ref: "I:\ateam\docum\fy14\2013LRTP_Network_Report\Ext_Sta_Balt_Feb12.jpg"$

2.4 Highway Network Elements

The transportation networks used by the travel model represent the region's transportation system as a collection of point locations (zone centroids and nodes) and transportation facility segments (links). This relatively simplistic depiction of the system provides the travel model with concise information about roadway connectivity and capacity that exists between zones. The model evaluates demand against the network capacity and subsequently produces level-of-service metrics (times and costs) between zones, which are important variables in the model.

There are several types of nodes and links that are used in the highway networks. These types are listed and described below:

- **Zone Centroids**: Point locations which represent the geographic center of activity of a TAZ. All trips begin and end at zone centroids. Although zones also have boundaries, zone boundaries are not explicitly represented in the transportation network, so all trips travel from one zone centroid to another zone centroid. The travel model represents zone-to-zone travel (inter-zonal travel), but not within-zone travel (intra-zonal travel) since this is below the grain of the model and its associated network.
- **PNR "Dummy" Centroids**: Point locations which represent park-and-ride (PNR) parking lots at Metrorail, commuter rail, and light rail stations. These are components of the highway network that exist so that congested travel times from TAZs to rail PNR lots may be developed in the construction of auto-access links in the transit network.
- **Highway Nodes**: Point locations that represent highway intersections, zonal points-of-access to the highway system, or simply "break points" or "shape points" for links representing highway facilities.
- Centroid Connector Links: Segments (or links) between zone centroids and the highway network by which generated traffic may leave or enter the TAZ. These special links represent the physical connection between zonal activity and the highway system based on the underlying localized street system. Centroid connections usually number from one to four links for each TAZ. Traffic "loaded" on centroid connectors is exclusively limited to trips originating or destined to a specific TAZ.
- **PNR Connector Links**: Segments that represent access links between Metrorail/commuter rail/light rail PNR lots and the highway network. Traffic is not "loaded" on these types of links; they are used for the sole purpose of developing congested TAZ-to-PNR travel times.
- **Highway Links**: These represent the major highway segments in the regional network on which regional traffic is "loaded." The segments are comprised of freeway, expressway, arterial, and collector facilities and do not include local streets. Freeway links are usually coded by direction, as two "one-way" links. In contrast, most non-freeway segments are represented as a single "two-way" facility. Freeway ramps are included in the regional network but are not represented as a "cloverleaf." Instead ramps are coarsely represented, and the regional model does not furnish accurate ramp volumes.

• **"Transit Only" Links**: There are two types of transit-only links. The **first** type are links that truly are restricted to only transit vehicles. An example would be a rail link for Metrorail or commuter rail, or a BRT link that allows only BRT vehicles. This type of transit-only link exists in the transit network. The **second** type of transit-only link exists in the highway network. In general, transit links are not a part of the highway network. However, to develop a transit network, one begins with the highway network as the base, or, more specifically, those links in the highway network that carry bus service. In some cases, bus service may operate on a road segment that is below the grain of the highway network. In these cases, TPB staff adds a transit-only link to the highway network so that bus service can use this link. Since it is transit-only, a transit-only link in the highway network is excluded from the traffic assignment process. Thus, regional traffic is not loaded onto transit-only links in the highway network.

2.5 Transit Network Elements

The transit system contains some components of the highway system described above and consists of additional "point" and "segment" elements that are necessary for transit path building. The TPB transit network consists of a combination of the highway network along with transit-related elements. The transit elements are listed and described below:

- **Rail Stations**: Point locations where travelers may board or alight from fixed-guideway transit service, including Metrorail, commuter rail, light rail, streetcar, and BRT.
- **Transit PNR Lots**: Park-and-Ride lot point locations. It is assumed that "auto-access" trips originating from TAZ centroids park at these locations, prior to boarding at rail stations or at bus stops (most typically express bus stops). The model also considers Kiss-and-Ride (KNR) access, but KNR access links do not connect to PNR lots; they connect directly to the rail stations.
- Rail Links: These represent fixed guideway (Metrorail, commuter rail, light rail, streetcar and BRT) segments that connect rail stations. These are not part of the background highway network. Once TPB staff makes the transition from the TRNBUILD transit path builder to the Public Transport (PT) transit path builder, there will no longer be as much of a distinction between a highway network and a transit network there will just be a transportation network, containing both highway and transit links in one network.
- **PNR Lot-to-Station Walking Links**: Links representing sidewalks between the PNR lot and the rail station.
- Bus-to-Station Transfer Links: Links representing sidewalks between bus stops and rail stations.
- Walk Access Links: Walk connections between zone centroids and transit stops accessible from the TAZ.
- Auto Access Links: Auto connections between the zone centroid and proximate PNR lots.
- **Sidewalk Links**: All highway links, other than freeways and expressways that are available for accessing transit from a zone centroid or are available for transferring between transit modes.
- **Transit lines/routes**: These are the individual transit routes that are in service during specific time periods. Transit lines are categorized among "modes" which distinguish basic service types (including, for example, Metrorail lines). The "line" files contain general characteristics (mode,

average headway, average end-to-end running time, and a one- or two-way indicator) as well as the route delineation, which is expressed as a node string. The route delineation of bus-related modes is defined as a series of highway nodes. Rail related route delineation is defined as a series of station nodes. In Cube, transit line files are text files. Since we currently use TRNBUILD, the files are in TRNBUILD format and have file extensions of "TB". In the future, we will transition to Public Transport (PT) and, at that time, the files will be in PT format, which will likely be indicated in the file name or the file extension (e.g., MODE1AM.LIN).

Most of the highway and transit network inputs are files that contain attributes of elements listed above. The attributes describe the physical location of nodes and the physical characteristics of links, such as the number of lanes, distance, and the facility classification. These are specified in Chapter 3.

2.6 Overview of Network Travel Costs

The Gen2/Version 2.4 Travel Model, like all the other models in the Gen2 family of models, requires several traveler out-of-pocket cost inputs. Most of the traveler costs are network-related or path-related elements. All cost inputs are either prepared in constant-year (year-2007) prices (dollars or cents) or are converted to constant-year prices as part of the model application process. The year 2007 is the model "base-year" because that was the year when model calibration data was collected. The travel model currently considers five travel cost components each affecting different varying steps of the travel model:

- Transit related
 - Transit fares
 - Parking costs associated with drive-access to transit (parking at a PNR lot)
- Highway related
 - Highway tolls
 - Parking costs associated with a non-transit trip
 - Other auto operating costs (distance based)

Transit fares are computed within the model stream in terms of current-year prices and are ultimately converted to constant-year prices. PNR-related parking costs are provided for both the peak and off-peak period. These PNR parking costs are stored in the station file (station.dbf). Current-year highway tolls are obtained from the appropriate websites. Future-year tolls are estimated in a semi-automated toll-setting process (see, for example, the current TPB model user's guide). Both PNR parking costs and tolls are coded as input variables in current-year prices.

As suggested by the list above, parking costs for transit trips are handled separately from parking costs associated with auto trips. Parking costs associated with a non-transit trip are calculated using a parking cost model, which is applied with the Cube Voyager script *prefarv23.s.* These parking costs are a function of job density, specifically attraction TAZ employment density. This script also calculates "terminal time," i.e., the time to park and un-park a car (see section 21.7 of the Gen2/Version 2.4 Travel model user's guide). Since these parking costs are calculated with a parking cost model, the network

coder does not have to collect these. Lastly, auto operating costs are computed directly in year-2007 prices, based on a single per-mile parameter.

PNR lot costs are coded as a station node attribute in the network input files in current-year cents. PNR lot costs, like tolls, are used exclusively in the development of rail-related transit paths. PNR lot costs may be altered with "shadow-price" variables that also exist in the station file for calibrating auto access demand at specific rail stations. One could make use of shadow prices to adjust the demand (up or down) at one or more PNR lots, to reflect observed behavior. Shadow prices have not been used in the current travel model but, for more information, see chapter 21 of the current Gen2/Version 2.4 Travel Model User's Guide. Also, unlike the other cost components, the PNR lot cost is not considered in the mode choice modeling process.

Highway tolls are coded on a highway network on a link-by-link basis and are specified either as a flat cost or as a per-mile rate. Highway tolls are rather unique cost components in that they affect the construction of highway paths. Most conventional travel models build minimum-impedance paths based on congested travel time. The TPB model builds highway paths based on a generalized cost function that equals the congested travel time plus the travel time equivalent of tolled costs. The monetary toll between zones therefore reflects any toll segments that exist along each minimum generalized cost path.

Zone-to-zone transit fares are computed in a way that mimics WMATA's actual fare policy. The computation involves two steps: 1) the calculation of Metrorail fares between stations using WMATA policy parameters and 2) combining Metrorail fares between stations with bus/commuter rail fares between "Bus Fare Zones" which are entered as an input. Bus Fare Zones are currently 21 "macro areas" of the region that approximate WMATA policy areas and other transit market areas. The transit fares are dependent on minimum perceived time paths between TAZ that include Metrorail defined boarding and alighting stations if Metrorail use is included within the path.

2.7 Node Numbering System

The various node groups are numbered in the network in a structured way. Structured node numbering is useful because it facilitates network integrity checks and network mapping. It is also important because model application programs reference predefined TAZs and node numbers and node ranges for the purposes of indexing or dimensioning.

An overview of the node numbering system that has been adopted for highway and transit networks on the 3,722-TAZ system is shown in Table 2-3. The numbering system allocates nodes from lowest to highest beginning with TAZs, station centroids, station nodes, PNR lot nodes, and finally highway nodes.

Node Class	Node Type	Beginning TAZ / Node	Ending TAZ / Node	Node Count
	Internal TAZ Centroid	1	3675	3,675
TAZ/PNR Centroids	External Stations:	3676	3722	47
	Reserved TAZ numbers	3723	5000	1,278
	PNR Centroid	5001	7999	2,999
Transit Nodes	Transit Station Nodes	8000	10999	3,000
	Transit PNR Lot Nodes	11000	13999	3,000
	Transit Reserved Nodes	14000	19999	6,000
Highway Network Nodes		20000	54999	35,000

 Table 2-3 TAZ/node numbering system overview

Ref: "I:\ateam\docum\FY15\2014LRTP_Network_Report\NW_Report_Tables\3722TAZ_Master_Node_Table_Jan_2015.xlsx"

The sub-allocation of transit nodes above is further detailed in Table 2-4.

Table 2-4 Node numbering system for transit nodes

	Beginning	Ending	TAZ / Node	
Node Type	TAZ / Node	TAZ / Node	Count	
Metrorail PNR Centroids:	5000	5999	1000	
Commuter Rail PNR Centroids:	6000	6999	1000	
Light Rail/BRT PNR Centroids:	7000	7999	1000	
Metrorail Station Node:	8000	8999	1000	
Commuter Rail Station Node:	9000	9999	1000	
MARC Stations	9000	9050	51	
VRE Stations	9051	9199	149	
External dummy stations	9200	9999	800	
Light Rail Station Node:	10000	10499	500	
BRT Street car Station Node:	10500	10999	500	
Metrorail PNR Lot Node:	11000	11999	1000	
Commuter PNR Lot Node:	12000	12999	1000	
LRT/Bus PNR Lot Node:	13000	13999	1000	
Reserved Transit Nodes	14000	19999	6000	
Note: - Union Station 9001 is both a VRE and a MARC station				
- 7000-7999 range is not currently used in the geodatabase				
- 9200, 9201,9202 External dummy MARC stations are assigned for Penn Line,				
Cameden Line, and Bruns	wick Line, res	pectively.		

Highway node numbers are allocated in discrete ranges by jurisdiction, as shown in Table 2-5.

	Beginning	Ending	Allocated
Jurisdiction	Node	Node	Nodes
District of Columbia	20000	21999	2000
Montgomery Co., Md.	22000	25999	4000
Prince George's Co., Md.	26000	29999	4000
Arlington Co., Va.	30000	31999	2000
City of Alexandria, Va.	32000	33999	2000
Fairfax Co Va.	34000	37999	4000
Loudoun Co., Va.	38000	39999	2000
Prince William Co., Va.	40000	41999	2000
Frederick Co., Md.	42000	43999	2000
Howard Co., Md.	44000	45499	1500
Anne Arundel Co., Md.	45500	46999	1500
Charles Co., Md.	47000	47999	1000
Carroll Co., Md.	48000	48999	1000
Calvert Co., Md	49000	49499	500
St. Mary's Co., Md.	49500	49999	500
King George Co., Va.	50000	50499	500
City of Fredericksburg, Va.	50500	50999	500
Stafford Co., Va.	51000	51999	1000
Spotsylvania Co., Va.	52000	52999	1000
Fauquier Co., Va.	53000	53999	1000
Clarke Co., Va.	54000	54499	500
Jefferson Co., WVa.	54500	54999	500
Reserved Nodes	90000	91000	1000

Table 2-5 Allocated highway node ranges by jurisdiction

 $Ref: ``l:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Tables\3722TAZ_Master_Node_Table_Jan_2015_V2.4.xlsx$

In November 2017, Montgomery County staff asked for an unused node range to be reserved exclusively for Montgomery County studies where more detailed coding is included in the highway networks, to avoid the possibility of using the same node numbers in different locations. The range from 90000-90999 was reserved for that purpose, to be used by Montgomery County staff and consultants.

3 Cube Voyager Network Inputs

Chapter 2 provided a broad overview of the TPB transportation networks in terms or the TAZ system, network elements, and node numbering conventions. This chapter presents more detail on the specific input files that are prepared, which include policy-related inputs as well as infrastructure-related inputs. The input files are presented in four sub-sections: cost deflation inputs, highway network inputs, transit network inputs, and transit fare inputs.

It is important to note that all input filenames used by the TPB travel demand model are assigned generic names, such as "link.dbf". The Gen2/Version 2.3 family of travel models identifies modeled scenarios using scenario-specific *subdirectories*, each containing generic input *filenames*. While this approach might appear confusing and error prone, TPB staff has grown comfortable with the application approach for several years. More detail on the TPB's model application may be found in the travel model user's guide (chapter 4).

3.1 Cost Deflation Inputs

The Gen2/Version 2.4 model application includes a procedure that creates an inflation/deflation factor for converting current-year costs into constant-year (year-2007) costs. The factor is used in subsequent steps and applied to highway tolls and transit fares. The cost deflation factor information is stored in a user-prepared parameter file, shown in Figure 3-1. The file contains the historical year-to-year consumer price index (CPI) schedule published by the Bureau of Labor Statistics (BLS). The specific CPI index definition used for deflating modeled transportation costs is defined as "All Urban Consumers/U.S. city average for all items (1982-84=100)." The following link was used to obtain historical CPI data:

https://www.bls.gov/regions/mid-atlantic/data/consumerpriceindexannualandsemiannual_table.htm

The CPI parameter file (Figure 3-1) is updated each year.¹¹ The file contains a table showing the annual CPI starting from 2008 to the most recent historical year. The table also includes the computed average annual growth rate and the deflation factor implied from the base year to the current year. The deflation rate for converting current year costs is based on the historical rate of inflation defined as the base-year CPI divided by current-year CPI (the most recent year for which annual CPI data is furnished). As shown in the parameter file, the existing deflation factor for the current year (2020) is 0.8011. In the recent past, the CPI has grown about 2% a year, which is indicated as the solid red line in Figure 3-2. TPB travel forecasts generally assume that future cost escalation will follow the historical rate of inflation.

¹¹ Ray Ngo to Mark S. Moran et al., "Update of the CPI Schedule used in the Version 2.4 Travel Model," Memorandum, June 21, 2021.

Figure 3-1 Cost deflation parameter file (CPI_File.txt)

```
;; - MWCOG V2.3 Travel Model - Cost deflation Table
;; - 6/15/2021 - RN
;; Data from BLS / All Urban Consumers (CPI-U) US City Avg.1982-84=100.0
;; http://www.usinflationcalculator.com/inflation/consumer-price-index-and-annual-percent-
changes-from-1913-to-2008
;; https://www.bls.gov/regions/mid-atlantic/data/consumerpriceindexannualandsemiannual table.htm
InflationFTR = 1.0 ; Inflation Assumption (DEFAULT IS 1.0)
Defl_OverRide = 0.0 ; Deflation Override (DEFAULT IS 0.0) If Non-zero it is used as
deflator
; Used as deflator IF NON-ZERO
BaseCPIYear = 2007 ; Base year of the CPI Table
CurrCPIYear = 2020 ; Current year on CPI Table
;
; Establish historic CPI table and Deflation Factor
;
         LOOKUP Name=CPI Table,
                  LOOKUP[1] = 1,Result = 2, ;; CPI index (from US BLS)
LOOKUP[2] = 1,Result = 3, ;; Compounded Growth Rate From Base Year
LOOKUP[3] = 1,Result = 4, ;; Deflation Factor
Interpolate = N, FAIL=0,0,0,list=Y,
               ;;
                                 (((YrCPI/BsCPI)^(1/n))-1.0)*100 BsCPI/YrCPI)
              ;; YEAR CPI Growth_Rate(%)
;; ---- -----
=' 2007 207 207
               ;;
                                                                            Historic Deflation
Factor

      R=' 2007, 207.342,
      0.00,

      ' 2008, 215.303,
      3.84,

      ' 2009, 214.537,
      1.72,

      ' 2010, 218.056,
      1.69,

      ' 2011, 224.939,
      2.06,

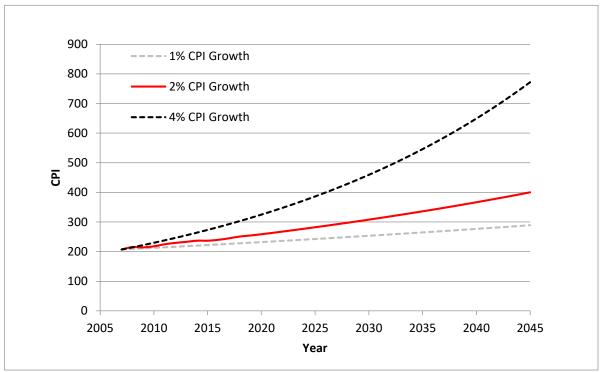
      ' 2012, 229.594,
      2.06,

      ' 2013, 232.957,
      1.96,

      ' 2015, 237.017,
      1.69,

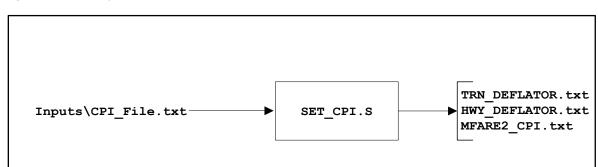
      ' 2016, 240.007,
      1.64,

      ' 2017, 245.120,
      1.69,


      ' 2019, 254.657,
      1.76,

      ' 2020, 258.811,
      1.72,

                                                  _____
                                                                                           1.0000 ', ; <--- BaseCPIYear
0.9630 ', ;
                                                                                           0.9665 ', ;
                                                                                          0.9509 ', ;
0.9218 ', ;
0.9031 ', ;
                                                                                           0.8900 ', ;
                                                                                           0.8758 ', ;
0.8748 ', ;
                                                                                           0.8639 ', ;
                                                                                           0.8459 ', ;
                                                                                           0.8257 ', ;
0.8110 ', ;
0.8011 ' ; <--- Curr(ent)CPI Year
; --- end of CPI File -----
; ------
```


Ref: "Z:\ModelRuns\fy22\CGV2_4_Conformity_2022_Update_Viz2045_Xmittal\2021\Inputs\ CPI_File.txt"

The InflationFTR variable ("inflation/deflation factor" variable) enables one to investigate varying future cost escalation scenarios. An InflationFTR value of "1.0" implies that future costs will escalate directly with the historical CPI growth rate. The parameter may be changed to, for example, "0.5" to reflect cost growth at one-half of the historical growth rate or to "2.0" to reflect cost growth at twice the historical growth rate, etc. The dashed lines in Figure 3-2 indicate how project cost escalation for these types of scenarios compare with the TPB's default cost escalation assumption.

The CPI_File.txt file is called into the SET_CPI.S script as shown in Figure 3-3. The script writes out two one-line text files containing the deflation factors that are used to convert current year highway and transit costs to constant-year costs in subsequent modeling steps. The MFARE2_CPI.txt file contains summary CPI information.

Figure 3-3 Deflation process in the Gen2/Version 2.4 Travel Model

3.2 Highway Network Files

A list of user-generated highway network inputs is provided in Table 3-1. The list includes a node file, a link file, a zonal land activity file, and a toll parameter file. The files are read into Cube Voyager scripts and are ultimately converted into a single binary or "built" network file (*.NET). Binary networks are used in the travel model application because they enable the software to process network-related operations more efficiently. The binary network ultimately created from the TPB "network building" process is named *zonehwy.net*. This file is sometimes referred to as an "unloaded network" file because it does not include link volumes resulting from the traffic assignment step.

Table 3-1 also indicates the source of the files. The highway node and link file are developed from a multi-year and multi-modal geodatabase that is discussed in Chapter 4. Other inputs relating to zonal land activity and policy parameters are generated either manually or by off-line procedures.

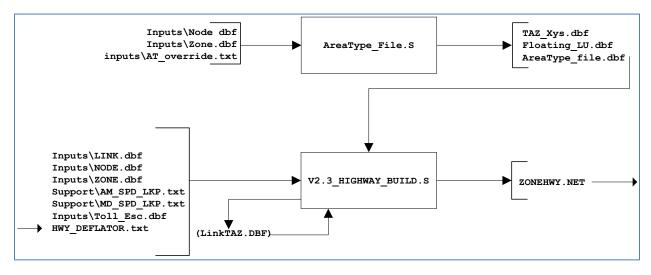

Filename	Description	Туре	Source
Node.dbf	XY coordinates of nodes in highway network	DBF	Geodatabase
Zone.dbf	Land use/land activity data at zonal level, 3722 TAZ	DBF	Analyst-generated
Link.dbf	Highway network links	DBF	Geodatabase
Toll_Esc.dbf	Toll policy parameters by link "Tollgrp" code	DBF	Analyst-generated

Table 3-1 Listing of highway network input files

Ref: "I:\ateam\docum\fy14\2013LRTP_Network_Report\v23_inputs_v10.xlsx"

The above files are used in a network building process that is shown in Figure 3-4. The process involves two steps, one that develops zonal area types (AreaType_File.S) and another that "builds" the highway network (V2.3_Highway_Build.S). The inputs files and the two steps are described in the next sections of the report.

Figure 3-4 Highway network building process

3.2.1 Zonal land use

The zone.dbf file contains zonal land activity and other items that are shown in Table 3-2. This file is created from a standard Cube Voyager process that reads a single, standardized, multi-year file from COG's Cooperative Forecasts of land activity, and creates individual (year-by-year) files, that are used by the travel model. The most recent COG Cooperative Forecasts, Round 9.2 land activity was employed in the air quality conformity analysis of the 2022 Update to Visualize 2045 and the FY 2023-2026 TIP. The Round 9.2 land activity totals for the modeled region are shown in Table 3-3. Cooperative Forecasts are prepared in five-year increments. If intermediate years are modeled, such as 2023 in the Visualize 2045 plan analysis, the land activity values are linearly interpolated.

File Name	Variable Name	Description
Zone.dbf	TAZ	TAZ (1-3,722)
	НН	Households
	ННРОР	Household Population
	GQPOP	Group Quarters Population
	TOTPOP	Total Population
	TOTEMP	Total Employment
	INDEMP	Industrial Employment
	RETEMP	Retail Employment
	OFFEMP	Office Employment
	OTHEMP	Other Employment
		Jurisdiction Code (0-23)
		0/DC, 1/MTG, 2/PG, 3/ALR/, 4/ALX,5, FFX, 6/LDN, 7/ PW,
		8/(unused), 9/ FRD, 10/HOW, 11/AA, 12/CHS, 13/(unused),
		14/CAR, 15/CAL, 16/STM, 17/ KG, 18/FBG, 19/STF, 20/SPTS,
	JURCODE	21/FAU, 22/CLK, 23/JEF
	LANDAREA	Gross Land Area (in sq. miles)
	HHINCIDX	Ratio of zonal HH median income to regional median HH income
		in tenths (i.e. 10 = 1.0), per 2000 CTPP. ¹²
	ADISTTOX	Airline distance to the nearest external station in whole miles.
	TAZXCRD	TAZ X-Coordinates (NAD83-based in whole feet)
	TAZYCRD	TAZ Y-Coordinates (NAD83-based in whole feet)

Table 3-2 Format description of the land use file (zone.dbf)

Before the zone-level land activity data can be used as an input to the travel model, it must undergo an adjustment process, known as the employment definition adjustment, which ensures that all counties and jurisdictions in the modeled area use a consistent employment definition. The reason for this adjustment is that different jurisdictions in the modeled area, which covers DC, Maryland, Virginia, and one county in West Virginia, use different definitions of employment.

¹² Chapter 3, "Calibration Report for the TPB Travel Forecasting Model, Version 2.3, on the 3,722-Zone Area System. Final Report". Washington, D.C.: National Capital Region Transportation Planning Board, January 20, 2012.

Year	HH	HHPOP	GQPop	TotPop	TotEMP
2010	2,461,971	6,521,799	115,368	6,637,167	3,755,550
2015	2,613,847	6,942,031	130,102	7,072,133	3,968,163
2020	2,764,447	7,321,002	137,965	7,458,967	4,216,993
2025	2,925,792	7,694,018	141,166	7,835,184	4,469,345
2030	3,087,311	8,064,524	143,026	8,207,550	4,711,797
2035	3,226,634	8,388,398	144,660	8,533,058	4,934,473
2040	3,350,987	8,685,935	147,439	8,833,374	5,142,730
2045	3,469,429	8,981,154	148,242	9,129,396	5,331,504

Table 3-3 Round 9.2 Cooperative Forecasts regional totals by year

Note: These values include the employment definition adjustment factor that ensures that a consistent definition of employment is used across the modeled area.

Ref I:\ateam\mod_inputs\lu\rnd92_taz3722\processing\ interpolate_rnd92_LU.csv

3.2.2 Highway Link and Node Coordinate Files

The link.dbf file contains the attributes of individual highway segments (links) that comprise the highway network. The link attributes are shown in Table 3-4. A row in this DBF file is uniquely defined by the A-Node/B-Node pair. The link.dbf file describes basic characteristics of individual highway segments including distance, the number of directional lanes by time-of-day period (??LANE), directional user-market enable or disable codes (??LIMIT), and facility type (FTYPE). These highway network link key attributes are described in this section.

File Name	Variable Name	Description
Link.dbf	A	A-Node
	В	B-Node
	DISTANCE	Link distance (in whole miles w/explicit decimal)
	JUR	Jurisdiction Code (0-23)
		0/DC, 1/MTG, 2/PG, 3/ALR/, 4/ALX,5, FFX, 6/LDN, 7/ PW, 8/(unused), 9/ FRD,
		10/HOW, 11/AA, 12/CHS, 13/(unused), 14/CAR, 15/CAL, 16/STM, 17/ KG,
		18/FBG, 19/STF, 20/SPTS, 21/FAU, 22/CLK, 23/JEF
	SCREEN	Screenline Code
	FTYPE	Link Facility Type Code (0-6)
		0/centroids, 1/Freeways, 2/Major Art., 3/Minor Art, 4/ Collector, 5/
		Expressway, 6/ Ramp
	TOLL	Toll Value in current year dollars
	TOLLGRP	Toll Group Code
	AMLANE	AM Peak No. of Lanes
	AMLIMIT	AM Peak Limit Code (0-9)
	PMLANE	PM Peak No. of Lanes
	PMLIMIT	PM Peak Limit Code (0-9)
	OPLANE	Off-Peak No. of Lanes
	OPLIMIT	Off-Peak Limit Code (0-9)
	EDGEID	Geometric network link identifier

Table 3-4 Base highway link file description (link.dbf)

File Name	Variable Name	Description
	LINKID	Logical network link identifier
	NETYEAR	Planning year of network link
	SHAPE_LENGT	Geometric length of network link (in feet)
	PROJECTID	Project identifier
	TRANTIME	
	WKTIME	
	MODE	New Unused (place markers for Gen3 Model)
	SPEED	
	Street Name	Street/Road name

The highway network node file, node.dbf (Table 3-5), contains the XY coordinates for both TAZs and highway nodes.

Table 3-5 : Highway node file description

File Name	Variable Name	Description
Node.dbf	Ν	TAZ or Highway Node Number
	х	X - Coordinates (NAD83-based in whole feet)
	γ	Y- Coordinates (NAD83-based in whole feet)

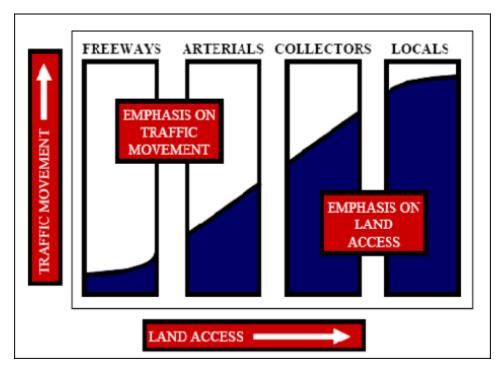
Road attributes that may vary by time of day are represented by two sets of link attributes named <prd>lane and <prd>limit, where <prd> is "AM", "PM", and "OP." The lane attribute describes the number of directional effective through lanes in operation during the period. The limit attribute assigns special market prohibitions that exist during a given time-of-day period. The limit prohibitions indicate 1) whether the directional link is available to traffic during the period or 2) whether the link is available to certain markets only during specific time periods or during the entire day. In many cases, lane coding is related to limit coding. The limit codes currently used by the model are presented in Table 3-6.

Table 3-6: Limit codes

Limit Code	Vehicles Allowed
0	All Vehicles
2	HOV 2+ Occ. Vehicles
3	HOV 3+ Occ. Vehicles
4	All Vehicles, other than trucks
5	Airport Passenger Auto Driver Trips
9	Transit Only

Limit and lane codes are used to reflect changes in directional-lane configurations, a variety of HOV operations, and truck prohibitions (primarily on parkways). Limit coding is also used to identify "Transit Only" links (limit code = 9), which were discussed in section 2.4 ("Highway Network Elements"). These

types of links are excluded from the highway assignment process because they are below the grain of both the zone system and the roadways included in the networks.


The third input file to AreaType_File.s (Figure 3-4) is a file that allows one to make an override of an area type value (AT_override.txt). For example, the area-type of the TAZ containing The Pentagon might be calculated as a 3 ("Medium employment density"), but one could override this value with a 1 ("High mixed employment and population density"). More details can be found in the travel model user's guide.

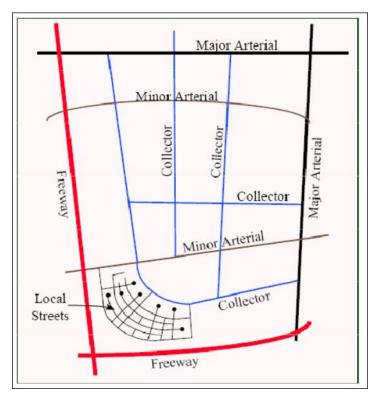
3.2.3 Roadway functional classification and the facility-type variable

Roads/highways are typically classified into a hierarchical system that indicates their design and the type of traffic they are designed to serve. The classic hierarchy is

- Freeways
- Arterials
- Collectors
- Local roads

Higher level roads, such as freeways, have an emphasis on mobility and traffic movement. Lower level roads, such as collectors and local roads, have an emphasis on land access. This continuum is shown graphically in Figure 3-5.

Source: 13


Figure 3-6 shows examples of the different types of roads. In COG/TPB highway networks, the facility-type (FTYPE) code is used to designate the hierarchy of road types. Facility-type codes are defined as:

- 0: centroid connectors
- 1: interstates and freeways
- 2: major arterials
- 3: minor arterials
- 4: collectors
- 5: parkways and expressways with at-grade intersections
- 6: freeway and expressway ramps

The highest-class roads in TPB networks are interstates/freeways (FTYPE=1) and parkways/expressways (FTYPE=5). The lowest-class roads in TPB networks are collectors (FTYPE=4). Note that local roads are not typically part of TPB networks, but each centroid connector represents one or more local roads that are not explicitly represented.

 ¹³ BLF Marketing, Wilbur Smith Associates, Inc., and RKG Associates, Inc., "Clarksville SMART GROWTH Plan
 2030: A Blueprint for Progress and Quality ... as We Grow to 250,000 Residents" (Clarksville, Tennessee, July
 23, 2010), chap. 3, http://www.clarksvillesmartgrowth.com/Sec3-TransportationAnalysis.htm.

Figure 3-6 Example of different types of roads

Source: 14

The facility type (FTYPE) attribute is used in conjunction with an area-type indicator (ATYPE) which is used to establish modeled free-flow speeds and hourly capacity.

The federal government has its own classification scheme, called the federal functional classification system.¹⁵ While there is a correlation between TPB facility-type codes and the federal functional classification system, there are numerous exceptions. For example, facilities categorized as freeways in the federal system may be coded as expressways in the TPB network, or expressways in the federal system may be coded as freeways. These types of classification adjustments are ultimately made to ensure that the facility use and operation is accurately represented in the travel model. It should also be noted that the "ramp code" (FTYPE=6) was added to the facility code list in FY 2003 to support an EPA requirement associated with estimating emissions specific to ramps.

3.2.4 Other link attributes

Modeled link free-flow speeds and capacities are based on the facility type (FTYPE) and area type (ATYPE) variables. The area type identifies, in broad terms, the level of land development around each

¹⁴ BLF Marketing, Wilbur Smith Associates, Inc., and RKG Associates, Inc., chap. 3.

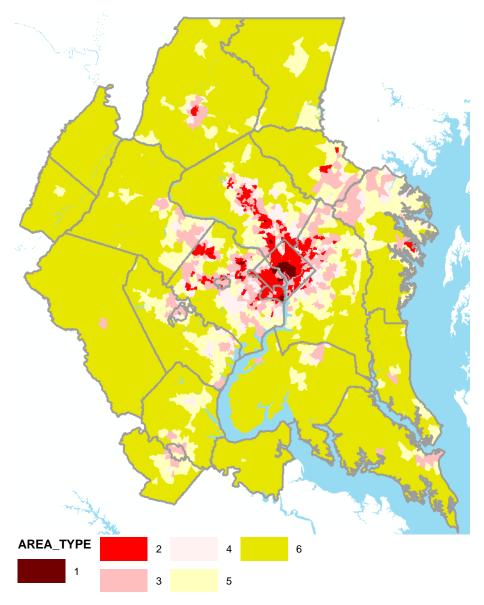
¹⁵ "Highway Functional Classification Concepts, Criteria and Procedures" (Washington, D.C.: U.S. Department of Transportation, Federal Highway Administration, 2013),

https://www.fhwa.dot.gov/planning/processes/statewide/related/highway_functional_classifications/fcauab.pdf.

highway link. The area type variable is not included in the link.dbf file, but rather, is dynamically generated during the highway network building process:

- In the AreaType_File.s script, a "1-mile floating" land use density is computed for each TAZ. The floating density for a given TAZ equals the accumulated land activity of the TAZ, plus the land activity of all proximate TAZs within a one-mile radius, divided by the similarly accumulated land area. Floating population and floating employment figures are computed for each TAZ. The one-mile radius is evaluated based strictly on centroid positioning.
- Each TAZ is assigned an area type (integer) value of 1 to 6 based on the joint population and employment density ranges defined in Table 3-7; the names of the six area types, as well as examples of each type, can be found in Table 3-8.
- The mid-point of each highway link is evaluated against all TAZ centroid positions. Each link is then assigned the area type value associated with the nearest TAZ.

One-Mile "Floating"	One- mile "Floating" Employment Density (Emp/Sq mi)												
Population Density (Pop/Sq mi)	0-100 101-350 351-1,50		351-1,500	1,501- 3,550	3,551- 13,750	13,751- 15,000	15,001+						
0-750	6	6	5	3	3	3	2						
751-1,500	6	5	5	3	3	3	2						
1,501-3,500	6	5	5	3	3	2	2						
3,501-6,000	6	4	4	3	2	2	1						
6,001-10,000	4	4	4	2	2	2	1						
10,000-15,000	4	4	4	2	2	2	1						
15,001+	2	2	2	2	2	1	1						


Table 3-7 Area-type codes, from 1 to 7, based on population and employment density

Area			
Туре	Name	Examples	
1	High mixed	1. Downtown DC, be	tween Georgetown, Florida Ave., and 11 th St. NE & SE
	employment and	2. Old Town Alexand	Iria
	population	3. The Rosslyn/Cour	t House area of Arlington Co.
	density	4. Pentagon City are	a of Arlington Co.
		5. Downtown Bethe	sda, Maryland
		6. Center of Tysons	Corner, Virginia
2	Medium/high	1. Most DC outside	he downtown core
	mixed density	2. Most Arlington Co	o., south of Lee Highway
		3. Most Alexandria	
		4. Areas of Tysons C	orner just beyond the center
		5. Annapolis, Maryla	nd
		6. Downtown Frede	rick, Maryland
		7. Parts of Reston ar	nd Herndon, Virginia, along the Dulles Access/Toll Road
3	Medium	1. Parts of upper NV	/ DC near Rock Creek Park
	employment	2. Parts of Arlington	along Lee Highway
	density	3. National Airport	
		4. The Pentagon	
		5. Arlington Cemete	ry
		6. BWI Airport	
		7. Potomac Mills ma	ll in Woodbridge, Virginia
4	Medium	1. Parts of upper NV	/ DC near Rock Creek Park
	population	2. Parts of north Arli	ngton
	density	3. SE DC near the Ca	pitol Heights Metrorail station
		4. Chevy Chase, Mar	yland, near the DC border
5	Low density	1. Area along McArt	hur Boulevard in DC
		2. Upper north Arlin	gton Co.
		3. Fort Hunt section	of Fairfax Co.
		4. Dulles Airport	
		5. Andrews Air Force	e Base
6	Rural	1. Great Falls, Virgin	ia
		2. Much of Loudoun	Co., Virginia
		3. Most of Fauquier	Co., Virginia
		4. Much of Charles,	St. Mary's, and Calvert Counties, Maryland
		5. Most of Frederick	and Carroll Co., Maryland

Table 3-8 The six area-type codes and examples of each area type

Note that The Pentagon and Arlington Cemetery are categorized as area type 3 ("medium employment density"). This is due to the use of the one-mile floating density. Some could argue that Arlington Cemetery should be categorized as "rural" (area type 6) and that the Pentagon should be categorized as area type 2 ("medium/high mixed density"). A user of the travel model can, if they so choose, override the calculated area-type values by using an override feature in the model. A map of the six area types can be found in Figure 3-7.

Figure 3-7 Map of the six area types

3.2.5 Toll Parameter File

The modeled area includes several currently existing toll facilities: the Dulles Toll Road, the Dulles Greenway, the Beltway HOT lanes ("Express Lanes") in Virginia, I-95/I-395 (from VA 610 at Garrisonville to just south of the 14th Street Bridge), I-66 inside the Beltway, the Intercounty Connector (ICC), and the Governor Nice Bridge. Beyond these, Visualize 2045 includes the expansion of the I-95/I-395 HOT lanes to VA 17 (Warrenton Rd- exit 133) to the south. It also includes the development of HOT lanes on I-66 outside the Beltway in Virginia, and HOT lanes on the Beltway in Maryland (American Legion Bridge to MD 355) and on I-270 from I-70 to the spur, and on the entire western spur, and on the eastern spur from MD187 north to the main I-270, as shown in Figure 3-8.

The metropolitan Washington region includes several tolled highway facilities that vary substantially in tolling policy. On some facilities, such as the Dulles Toll Road, the Intercounty Connector (ICC), and the

Governor Nice Bridge, toll values are fixed and are not a function of the time of day or day of the week. On other facilities, toll rates can vary throughout the day, either set in advance, with "fixed" tolls that vary by specific times of the day, or set dynamically, as a function of real-time congestion levels. The ICC, between Prince George's County and Montgomery County, is an example of a facility where fixed toll rates vary by hour of the day, according to a schedule that has been set in advance. The highoccupancy/toll (HOT) lanes on I-495, known as the I-495 Express Lanes, are an example of a toll facility where the toll rates are set dynamically, as a function of congestion levels. TPB staff reviews the tolling policy of private and publicly operated facilities each year and strives to produce reasonably representative toll values for each time-of-day period.¹⁶

There are two cost-related variables in the link.dbf file that allow the user to flexibly specify tolls in the network: the *TOLL* and *TOLLGRP* variables. The **TOLL** variable is a monetary value of the fee charged to traverse the link. The network database contains tolls for each year, up to the current year. This allows the user to produce a year-2021 network, for instance, that would contain the tolls as they were in 2021. For forecast years, the network contains the current year's tolls in current-year cents. **TOLLGRP** is a variable that is used to identify tolling locations in the network. A TOLLGRP code of 1 identifies existing facilities where fixed-rate tolls are collected at specific locations. The Dulles Toll Road (VA 267) is an example of this. A TOLLGRP code of 2 identifies links on the ICC. A TOLLGRP code of 3 or greater identifies links on a variably priced facility, such as the I-495 Express Lanes. The TOLLGRP rates are specified in the toll parameter/escalation file (TOLL_ESC.dbf). Table 3-9 lists the specific variables in the file.

¹⁶ See, for example, Jane Posey to Files, "Visualize 2045 Toll Rates," Memorandum, January 10, 2019.

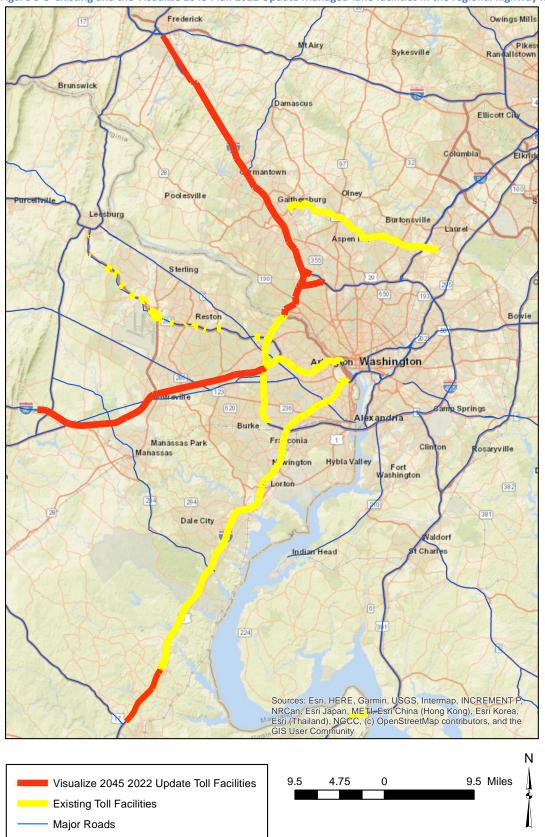
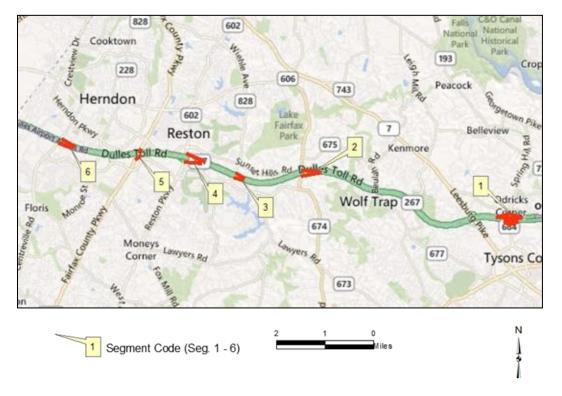


Figure 3-8 Existing and the Visualize 2045 Plan 2022 Update Managed-lane facilities in the regional highway networks

 $Ref''!:|ateam|docum|fy22|Version2.4_2022Update_Visualize2045_Network_Report_Tables|Toll_Facilities_V2.4_22UPD_rev.emf'''.$

Variable	
Name	Description
Tollgrp	Toll group code, 1=existing fixed-toll facility, 2=ICC, 3+= VA/MD HOT or other toll lane
Escfac	Deflation factor override
Dstfac	Distance (per mile)-based toll factor in current-year cents/dollar (optional)
AM_Tftr	AM period Toll factor (no units)
PM_Tftr	PM period toll factor (no units)
OP_Tftr	Off-peak period toll factor (no units)
AT_MIn	Area Type minimum override (optional)
AT_Max	Area Type maximum override (optional)
TollType	Toll Type (1 = operating in calibration year, 2 = operating after calibration year)


Table 3-9 Toll parameter file (Toll_esc.dbf)

I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\Lst_of NW_Fare_Files.xlsx"

The file contains a base distance-based toll factor (DSTFAC), in cents/mile, and time-period-specific variables (e.g., AM_TFTR and PM_TFTR) that allow one to transform distance-based factors to time-period-specific toll rates. Except for the case where TOLLGRP = 1, the TOLL and TOLLGRP factors should not be invoked together. If the TOLL value of a given link is non-zero and the TOLLGRP value equals zero, the highway network building process automatically imposes a TOLLGRP override value of "1". TOLLGRP codes that are used should therefore be greater than "1."

The highway building process ultimately creates six period-specific toll attributes: AMTOLL, PMTOLL, OPTOLL (tolls by time-of-day on all toll facilities) and AMTOLL_VP, PMTOLL_VP, OPTOLL_VP (tolls by time-of-day on variable priced facilities only).

Figure 3-9 shows tolling locations on the Dulles Toll Road.

The 2022 update to the Visualize 2045 plan forecast-year networks reflects year-2021 toll values, as shown in Table 3-10. Note that in this table, the nominal toll rate is fixed at the year-2021 value through 2045, which implies that real tolls (prices) are dropping from 2021 to 2045. In the model, all prices are converted to a common year (2007, the calibration year) and then grown to the modeled year being analyzed. Thus, a year-2021 toll would first be brought to year-2007 prices, then would be grown to the appropriate year being modeled (e.g., 2030). This deflation step is done using the CPI data in CPI_File.txt. As can be seen in Figure 3-1 on p. 26, the deflation year goes only to 2020. That is because, when the CPI file was being developed, data for the entirety of 2021 was not yet available. Thus, when year-2021 tolls are deflated, they are deflated using the year-2020 deflation value (0. 8011).

					Toll Values (in 2021 cents)
Segment	Α	В	Location	Direction	2021
1	35130	35133	Main Toll Plaza-Rt 684 Interchange (LOV)	Inbound	325
	35136	35129	Main Toll Plaza-Rt 684 Interchange (LOV)	Outbound	325
	35430	36657	Greensboro Dr at Tyco Rd	Inbound	150
	36657	35129	Greensboro Dr at Tyco Rd	Outbound	150
	35130	35132	Spring Hill Road- Off Ramp	Inbound	150
	35132	35133	Spring Hill Road- On Ramp	Inbound	150
	35136	35131	Spring Hill Road- Off Ramp	Outbound	150
	35131	35129	Spring Hill Road- On Ramp	Outbound	150
2	35097	35096	Rt 674 (Hunter Mill Road) - On Ramp	Inbound	150
	35194	35095	Rt 674 (Hunter Mill Road) - Off Ramp	Outbound	150
3	35101	35100	Rt 828 (Wiehle Avenue)- On Ramp	Inbound	150
	35196	35099	Rt 828 (Wiehle Avenue)- Off Ramp	Outbound	150
4	35105	35104	Rt 602 (Reston Pkwy)-On Ramp	Inbound	150
	35198	35103	Rt 602 (Reston Pkwy)-Off Ramp	Outbound	150
5	35287	35291	Rt 7100 (Fairfax Co. Pkwy)- On Ramp	Inbound	150
	35289	35286	Rt 7100 (Fairfax Co. Pkwy)- Off Ramp	Outbound	150
6	35109	35108	Rt 228 (Centreville Road) -On Ramp	Inbound	150
	35200	35107	Rt 228 (Centreville Road) -Off Ramp	Outbound	150

Table 3-10 Dulles Toll Road (VA 267): Toll links

Note: Toll rates current to May, 2021. Year 2021 toll values are used for all forecast years.

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables \Grnway_Dulles_v2.4.xlsx"

The 14-mile Dulles Greenway connects to the Dulles Toll Road at Route 28 (at Dulles International Airport), and extends west to Route 15 at Leesburg, as shown in Figure 3-10 and Figure 3-11. Dulles Greenway tolls (shown in Table 3-11, for segments 1-4, and, Table 3-12, for segments 5-8) are coded in highway networks **based on a weighted average of the cash rates/E-ZPass rates, and congestion-management tolling**. Survey data indicate that the E-ZPass markets account for roughly three-fourths of users and that about half the travel occurs during the times when the congestion-management tolls are in effect. The main toll facility is represented west of the Route 28 (Sully Road) interchange with a weighted toll of \$6.90 in 2021 and beyond. A weighted toll of \$5.40 in 2021 and beyond is used for all westbound and eastbound on-ramps at Routes 28, 606, and 607. A weighted toll of \$4.70 in 2021 and beyond is coded for all westbound and eastbound on-ramps at Routes 772, Claiborne Parkway, and Belmont Ridge Road. A weighted toll of \$3.85 in 2021 and beyond is coded for all on-ramps at Route 653/Shreve Mill Road. No toll is charged at the future Battlefield Parkway interchange.

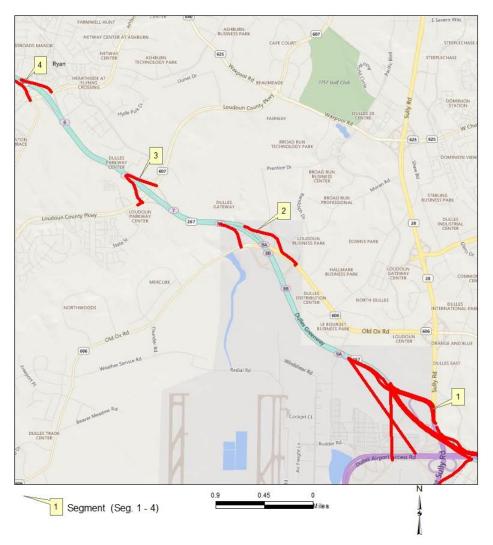
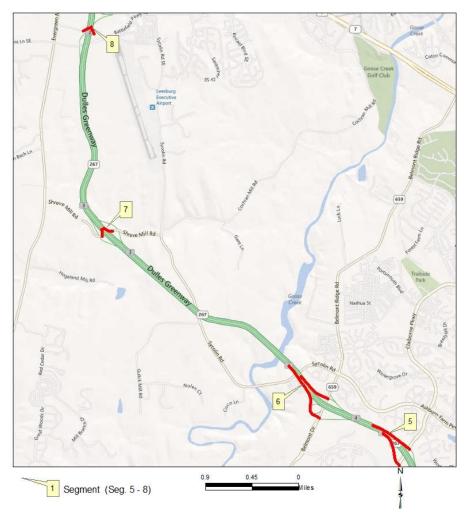


Figure 3-10 Dulles Greenway: Toll facilities locations (Map 1 of 2)


Highway and Transit Networks used in the Air Quality Conformity Analysis of the 2022 Update to Visualize 2045 and the FY 2023-2026 TIP (Gen2/Ver. 2.4 Travel Model)

					Toll Values (in 2021 cents)
Seg	Anode	Bnode	Location	Direction	2021
1	38046	38098	Rt. 28	Outbound	690
	38266	34810	Rt. 28	Inbound	690
	38025	34810	Rt. 28 Toll Plaza on- Ramp	Inbound	150
	38046	38018	Rt. 28 Toll Plaza off- Ramp	Outbound	150
	38064	38098	Rt. 28 to Dulles Greenway on-Ramp	Outbound	540
	38266	38064	Dulles Greenway to Rt. 28 off-Ramp	Inbound	540
	38043	38098	Airport Access road to Dulles Greenway on- Ramp	Outbound	540
	38266	38047	Dulles Greenway to Airport Access road off Ramp	Inbound	540
2	38029	38271	Rt 606 (Old Ox Road) on-Ramp	Outbound	540
	38272	38273	Rt 606 (Old Ox Road) off-Ramp	Inbound	540
3	38100	38276	Rt 607 (Loudoun Co. Pkwy) on-Ramp	Outbound	540
	38277	38278	Rt 607 (Loudoun Co. Pkwy) off-Ramp	Inbound	540
4	38065	38281	Rt 772 (Old Ryan Rd) on-Ramp	Outbound	470
	38282	38283	Rt 772 (Old Ryan Rd) off-Ramp	Inbound	470

Table 3-11 Dulles Greenway Toll inks (Segments 1-4)

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\Grnway_Dulles_v2.4.xlsx"

Figure 3-11 Dulles Greenway: Toll facilities locations (Map 2 of 2)

					Toll Values (in 2021 cents)
Seg	Anode	Bnode	Location	Direction	2021
5	38069	38289	Claiborn Pkwy on-Ramp	Outbound	470
	38290	38291	Claiborn Pkwy off-Ramp	Inbound	470
6	38070	38294	Belmont Ridge Road on-Ramp	Outbound	470
	38295	38296	Belmont Ridge Road off-Ramp	Inbound	470
7	38071	38299	VA 653 Shreve Mill Road on-Ramp	Outbound	385
	38300	38301	VA 653 Shreve Mill Road on-Ramp	Inbound	385
8	38072	38304	Battlefield Pkwy on-Ramp	Outbound	na
	38305	38306	Battlefield Pkwy off-Ramp	Inbound	na

Table 3-12 Dulles Greenway Toll inks (Segments 5-8)

Note: Toll rates current to May, 2021. Year 2021 toll values are used for all forecast years.

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\Grnway_Dulles_v2.4.xlsx"

Table 3-13 shows that a weighted (E-ZPass vs. cash) toll of \$2.41 is coded on the Harry W. Nice Bridge, in both directions, on the forecast-year network links.

Table 3-13 Harry W. Nice Bridge toll links

				Toll Values (in 2021 cents)
Α	В	Location	Direction	2021
50002	50001	Virginia - Maryland	Inbound	241
50001	50002	Maryland - Virginia	Outbound	241

 $Ref: "l:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report_Tables\Grnway_Dulles_v2.4.xlsx"$

Starting in 2012, the Intercounty Connector (ICC) in Maryland was included in all networks representing the year 2012 and beyond. The toll rates used in the Visualize 2045 plan for the ICC are effective as of July 2015.¹⁷ HOT lane operations on I-95/I-395 between the 14th Street Bridge and VA 610 (Garrisonville Road) in Stafford County are included in all networks representing 2019 and beyond. The 2022 update to Visualize 2045 includes the expansion of the I-95/I-395 HOT lanes to VA 17 (Warrenton Rd- exit 133) to the south in all networks representing 2022 and beyond. The I-395 HOV lanes from Turkeycock Run to just south of the 14th Street Bridge converted to HOT in 2019. HOV/HOT lanes on I-95 between VA 610 and VA 17 in Spotsylvania County are in all networks representing 2025 and beyond. On I-495 (Capital Beltway) in Virginia HOT lane operations are included as follows:

- Beginning in 2013: From Hemming Avenue to south of Old Dominion Drive;
- Beginning in 2025: From south of Old Dominion Drive to the George Washington Parkway;
- Beginning in 2025: From the George Washington Parkway to the American Legion Bridge.

The HOV lanes on I-66 inside the Beltway converted to HOT lanes in 2017. HOT lanes on I-66 outside the Beltway to University Boulevard are included in all networks starting in 2022, and from University Boulevard to 1.2 miles west of US 15 in 2040.

¹⁷ Jane Posey to Files, "Visualize 2045 Toll Rates," Memorandum, January 10, 2019.

As discussed earlier in this chapter, in the COG/TPB highway networks, the toll group variable (TOLLGRP) indicates the type of tolling on the facility. TOLLGRP code 1 is assigned for existing fixed-rate tolled facilities (Dulles Toll Road, Dulles Greenway, and the Harry W. Nice Bridge). The ICC in Maryland is modeled as TOLLGRP code 2 with fixed toll values of 22 cents/mile during peak periods and 17 cents/mile during off-peak periods (in 2021 cents). For all other tolled facilities, the TOLLGRP code varies and is used to develop variably priced tolls.

For the variably-priced ETL and HOT-lane facilities, the links in each segment of I-270, the Beltway in Virginia, I-95/I-395, and I-66 are coded with a unique TOLLGRP variable. The network link toll value (TOLL) is left blank and the toll facility type variable (TOLLGRP) is used to access lookup tables of fixed fees and per-mile rates. The tolls vary based on the level of congestion. Table 3-14 shows years 2021 and 2023 end-to-end tolls and average toll rates by time of day, and by direction in 2020 dollars. This summary process was developed by Feng Xie and documented by Sanghyeon Ko.¹⁸

		2021							2023					
	Distance	AM		PM		MD		AM		PM		М	D	
	in miles	Toll	Rate	Toll	Rate	Toll	Rate	Toll	Rate	Toll	Rate	Toll	Rate	
Beltway														
Old Dominion Dr to Springfield	10.22	2.04	0.20	3.24	0.32	1.53	0.15	2.04	0.20	4.38	0.43	1.53	0.15	
Springfield to Old Dominion Dr	10.28	3.79	0.37	2.40	0.23	1.54	0.15	4.20	0.41	2.40	0.23	1.54	0.15	
1-95														
Southern limit of I-95 to 14th St. Bridge	36.43	26.65	0.73	N/A	N/A	5.46	0.15	28.72	0.79	N/A	N/A	5.46	0.15	
14th St. Bridge to Southern limit of I-95	36.54	N/A	N/A	15.56	0.43	5.48	0.15	N/A	N/A	17.73	0.49	5.48	0.15	
I-66 Inside the Beltway (for 2017 and later)														
Roosevelt Bridge to Capital Beltway	9.08	N/A	N/A	27.07	2.98	N/A	N/A	N/A	N/A	9.40	1.04	N/A	N/A	
Capital Beltway to Roosevelt Bridge	9.33	8.40	0.90	N/A	N/A	N/A	N/A	8.64	0.93	N/A	N/A	N/A	N/A	
I-66 Outside the Beltway (for 2021 and later)														
Capital Beltway to West Terminus	21.62			N/A				4.32	0.20	10.00	0.46	3.24	0.15	
West Terminus to Capital Beltway	21.37							17.99	0.84	4.27	0.20	3.20	0.15	
Note: all tolls are expressed in 2020 dollars an														

Table 3-14 Toll Summaries: Year 2021 and 2023 (Visualize 2045 plan)

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\ Toll_Summaries_2022Update_Vis2045_AllYears.xlsx"

Starting in the year 2017, I-66 inside the Capital Beltway (from US Rt. 29 in Rosslyn to I-495) was converted from an HOV facility to a HOT-lane facility. Vehicles traveling in the peak period and peak direction with two or more occupants can use the facility for free, but others must pay a toll. When I-66

¹⁸ Sanghyeon Ko to Mark S. Moran, Feng Xie, and Anant Choudhary, "Cheat Sheet for Developing Toll Summary Tables Using Cube," Memorandum, January 11, 2019.

HOT lanes outside the Beltway open, the occupancy requirement inside the Beltway will increase from two to three or more to avoid the toll. In 2040, VDOT plans to make I-66 inside the Beltway HOV3+ in both directions in the peak periods.

Table 3-15 shows toll information for years 2025 and 2030.

					2025						Toll Rate Tole 2.46 0.20 5.9 6.92 0.56 3.1 40.28 0.90 N/ 40.28 0.90 N/ M/A N/A 27.2 N/A N/A 10.3 10.00 1.07 N/ 4.18 0.20 13.4 21.61 1.01 4.2 1.52 0.24 1.7 3.02 0.45 1.5 27.53 0.88 6.4 25.81 0.84 6.1				
		Dist	A	N	P	N	М	D	Dist	A	И	P	N	M	D
		in mi.	Toll	Rate	Toll	Rate	Toll	Rate	in mi.	Toll	Rate	Toll	Rate	Toll	Rate
Beltway (VA)															
American Legion Bridge	to Springfield	12.31	2.46	0.20	5.53	0.45	1.85	0.15	12.31	2.46	0.20	5.99	0.49	1.85	0.15
Springfield to American	Legion Bridge	12.36	5.79	0.47	3.05	0.25	1.85	0.15	12.36	6.92	0.56	3.18	0.26	1.85	0.15
I-95															
Southern limit of I-95 to	14th St. Bridge	44.63	31.10	0.70	N/A	N/A	6.69	0.15	44.63	40.28	0.90	N/A	N/A	6.69	0.15
14th St. Bridge to Southe	ern limit of I-95	45.32	N/A	N/A	21.07	0.46	6.80	0.15	45.32	N/A	N/A	27.28	0.60	6.80	0.15
I-66 Inside the Beltway	(for 2017 and later)														
Roosevelt Bridge to Cap	ital Beltway	9.78	N/A	N/A	9.65	0.99	N/A	N/A	9.78	N/A	N/A	10.36	1.06	N/A	N/A
Capital Beltway to Roos	evelt Bridge	9.33	8.87	0.95	N/A	N/A	N/A	N/A	9.33	10.00	1.07	N/A	N/A	N/A	N/A
I-66 Outside the Beltwa	y (for 2025 and later)														
Capital Beltway to West	Terminus	20.92	4.18	0.20	10.94	0.52	3.14	0.15	20.92	4.18	0.20	13.42	0.64	3.14	0.15
West Terminus to Capita	al Beltway	21.37	17.82	0.83	4.27	0.20	3.21	0.15	21.36	21.61	1.01	4.27	0.20	3.20	0.15
Beltway (MD - ETL)															
American Legion to MD-	355	6.25	1.52	0.24	1.53	0.24	0.94	0.15	6.25	1.52	0.24	1.79	0.29	0.94	0.15
MD-355 to American Le	gion Bridge	6.66	2.19	0.33	1.56	0.23	1.00	0.15	6.66	3.02	0.45	1.56	0.23	1.00	0.15
I-270 (MD - ETL)															
2025	<u>2030</u>														
I-370 to Spur (VA side)	I-70 to Spur (VA side)	8.62	4.55	0.53	1.78	0.21	1.29	0.15	31.33	27.53	0.88	6.42	0.20	4.70	0.15
I-370 to Spur (MD side)	I-70 to Spur (MD side)	7.84	3.04	0.39	1.57	0.20	1.18	0.15	30.55	25.81	0.84	6.11	0.20	4.58	0.15
Spur (VA side) to I-370	Spur (VA side) to I-70	8.65	1.78	0.21	5.26	0.61	1.30	0.15	30.91	6.24	0.20	18.82	0.61	4.64	0.15
Spur (MD side) to I-370	Spur (MD side) to I-70	7.87	1.57	0.20	3.86	0.49	1.18	0.15	30.13	6.03	0.20	17.26	0.57	4.52	0.15

Note: all tolls are expressed in 2020 dollars and toll rates are measured in dollar per mile.

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\ Toll_Summaries_2022Update_Vis2045_AllYears.xlsx"

Table 3-16 shows toll information for years 2040 and 2045.

		2040							2045						
	Distance	AI	И	PN	N	M	D	A	И	PN	N	М	D		
	in miles	Toll	Rate	Toll	Rate	Toll	Rate	Toll	Rate	Toll	Rate	Toll	Rate		
Beltway (VA)															
American Legion Bridge to Springfield	12.31	2.46	0.20	7.49	0.61	1.85	0.15	2.46	0.20	8.60	0.70	1.85	0.15		
Springfield to American Legion Bridge	12.36	9.32	0.75	3.05	0.25	1.85	0.15	10.33	0.84	3.07	0.25	1.85	0.15		
I-95															
Southern limit of I-95 to 14th St. Bridge	44.63	59.42	1.33	N/A	N/A	6.97	0.16	65.90	1.48	N/A	N/A	7.14	0.16		
14th St. Bridge to Southern limit of I-95	45.32	N/A	N/A	41.83	0.92	6.80	0.15	N/A	N/A	48.49	1.07	6.80	0.15		
I-66 Inside the Beltway (for 2017 and later)															
Roosevelt Bridge to Capital Beltway	9.78	1.96	0.20	9.75	1.00	N/A	N/A	1.96	0.20	10.43	1.07	N/A	N/A		
Capital Beltway to Roosevelt Bridge	9.33	11.63	1.25	1.95	0.21	N/A	N/A	12.35	1.32	2.02	0.22	N/A	N/A		
I-66 Outside the Beltway (for 2025 and later)															
Capital Beltway to West Terminus	25.53	5.11	0.20	17.49	0.69	3.83	0.15	5.11	0.20	20.22	0.79	3.83	0.15		
West Terminus to Capital Beltway	25.98	26.90	1.04	5.20	0.20	3.90	0.15	29.03	1.12	5.20	0.20	3.90	0.15		
Beltway (MD - ETL)															
American Legion to MD-355	6.25	1.69	0.27	2.10	0.34	0.94	0.15	1.82	0.29	2.25	0.36	0.94	0.15		
MD-355 to American Legion Bridge	6.66	3.73	0.56	1.74	0.26	1.00	0.15	4.08	0.61	1.91	0.29	1.00	0.15		
I-270 (MD - ETL)															
I-70 to Spur (VA side)	31.33	34.80	1.11	6.42	0.20	4.70	0.15	37.18	1.19	6.47	0.21	4.70	0.15		
I-70 to Spur (MD side)	30.55	32.98	1.08	6.11	0.20	4.58	0.15	35.42	1.16	6.11	0.20	4.58	0.15		
Spur (VA side) to I-70	30.91	6.45	0.21	23.14	0.75	4.64	0.15	6.51	0.21	25.03	0.81	4.64	0.15		
Spur (MD side) to I-70	30.13	6.03	0.20	21.58	0.72	4.52	0.15	6.03	0.20	23.39	0.78	4.52	0.15		

Table 3-16 Toll Summaries: Year 2040 and 2045 (Visualize 2045 plan)

Note: all tolls are expressed in 2020 dollars and toll rates are measured in dollar per mile.

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\ Toll_Summaries_2022Update_Viz2045_AllYears.xlsx"

Note about coding the number of lanes on HOV and HOT-lane facilities: On some roads, such as HOV and HOT-lane facilities, the number of lanes available for use varies by the time of day. Unfortunately, there is a mismatch between the four time-of-day periods used in the traffic assignment and the times of day when operational changes occur to these facilities. Thus, when TPB staff is coding such facilities, it is necessary to make simplifying assumptions. Thus, for years or segments where a facility such as I-395 is 2 lanes, TPB staff codes 1 lane northbound and 1 lane southbound during the off-peak periods to best replicate the capacity of the facility. Similarly, for model years or segments where the facility is 3 lanes, TPB staff codes 2 lanes northbound and 2 lanes southbound. Although this is not precise, it is a compromise that must be made, and should be reasonable for regional modeling purposes, due to the mismatch between the four time-of-day periods used in the traffic assignment and the times of day when operational changes occur to these facilities.

3.2.6 Highway Network Screenlines

The network includes an attribute (SCREEN) that identifies 36 screenlines/cutlines, which are used for model summary or validation purposes.¹⁹ The screenline locations are shown in Figure 3-12 and Figure 3-13.

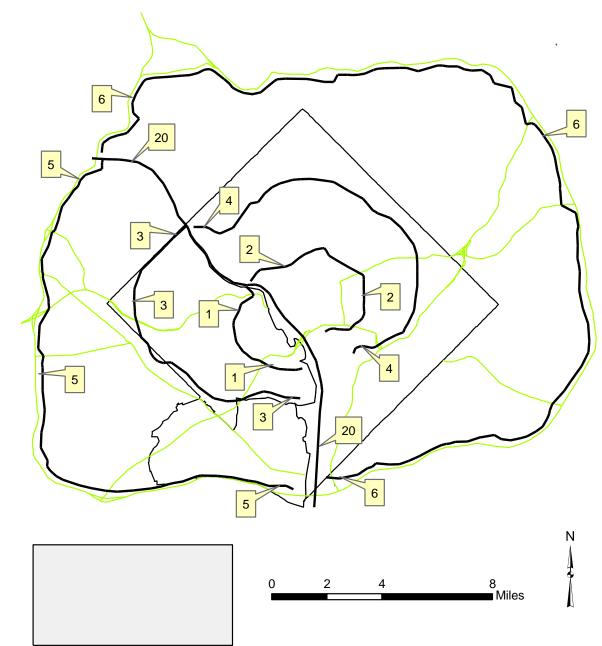


Figure 3-12 Highway Network screenlines: Inside the Beltway

¹⁹ The "screen" variable includes codes from 1 to 38, but the numbers 21 and 30 are unused.

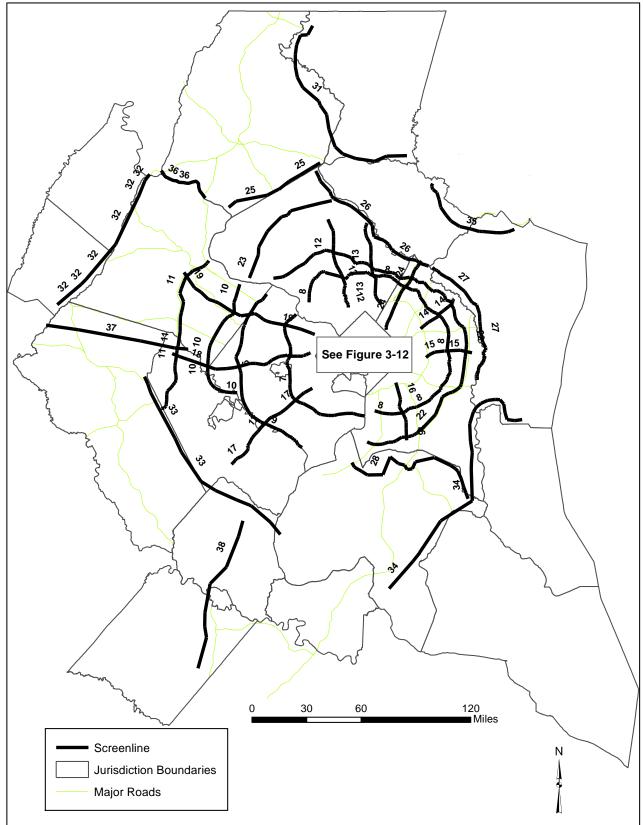


Figure 3-13 Highway network screenlines: Outside the Beltway

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\ Screenline_Map_Rev_March9_2022.emf

3.2.7 Highway Statistics from the 2022 Update to Visualize 2045

A summary of directional lane miles for the AM peak period is shown in Table 3-17.²⁰ In the 2021 highway network, there were over 23,000 AM lane miles. By 2045, this number is predicted to increase by almost 1,400, which is 6%, regionally. Fairfax Co. and Prince George's Co. are predicted to have the largest increase in AM lane miles from 2021 to 2045 – 320 and 150 miles, respectively – though this is not surprising since these counties are the largest jurisdictions in the region, in terms of lane miles. The District of Columbia is the only jurisdiction that is predicted to have decline in the AM lane miles from 2021 to 2045, but the decrease is very small (much less than 1 percent).

²⁰ Computation of AM lane miles **excludes** TAZ centroid connectors (FTYPE=0) and transit-only links (AMLIMIT=9) in the highway network.

Highway and Transit Networks used in the Air Quality Conformity Analysis of the 2022 Update to Visualize 2045 and the FY 2023-2026 TIP (Gen2/Ver. 2.4 Travel Model)

Jurisdiction								Diff	Ratio
Code	Jurisdiction	2021	2023	2025	2030	2040	2045	2045-2021	2045/2021
0	District of Columbia	1,382	1,374	1,373	1,370	1,364	1,364	-18	0.99
1	Montgomery Co., Md.	2,679	2,679	2,730	2,789	2,800	2,810	132	1.05
2	Prince Georges Co., Md.	3,068	3,070	3,090	3,141	3,165	3,216	147	1.05
3	Arlington Co., Va.	522	523	523	523	523	523	1	1.00
4	City of Alexandria, Va.	303	304	304	304	305	305	2	1.01
5	Fairfax Co., Va.	3,347	3,395	3,433	3,540	3,669	3,669	322	1.10
6	Loudoun Co. <i>,</i> Va.	1,687	1,724	1,762	1,812	1,831	1,831	145	1.09
7	Prince William Co., Va.	1,499	1,518	1,549	1,571	1,672	1,672	173	1.12
9	Frederick Co., Md.	1,680	1,682	1,682	1,721	1,743	1,743	63	1.04
10	Howard Co., Md.	982	987	987	987	1,012	1,071	88	1.09
11	Anne Arundel Co., Md.	1,401	1,401	1,423	1,427	1,482	1,503	102	1.07
12	Charles Co., Md.	853	859	859	859	859	896	44	1.05
14	Carroll Co., Md.	576	576	576	576	628	628	52	1.09
15	Calvert Co., Md	367	367	367	367	369	377	9	1.03
16	St. Mary's Co., Md.	455	455	455	455	461	461	6	1.01
17	King George Co., Va.	254	254	254	254	254	254	0	1.00
18	City of Fredericksburg, Va.	83	83	98	106	107	107	24	1.29
19	Stafford Co., Va.	595	616	627	627	637	644	49	1.08
20	Spotsylvania Co., Va.	443	443	446	446	464	464	21	1.05
21	Fauquier Co., Va.	795	795	795	795	795	795	0	1.00
22	Clark Co., Va.	161	161	161	161	161	161	0	1.00
23	Jefferson Co., WVa.	278	278	278	278	278	278	0	1.00
		23,409	23,544	23,770	24,109	24,578	24,771	1,362	1.06

Table 3-17 AM lane-miles for the 2022 Update to Visualize 2045 highway networks by Jurisdiction

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables \AM_Lane_Mile.xlsx, lanemii_Crosstab_Rev.s"

Note: TAZ connectors (FTYPE=0) and transit-only links (AMLIMIT=9) are excluded.

A summary of directional lane miles for the AM peak period by facility type is shown in Table 3-18. Freeways and Major Arterials are predicted to have the largest increases in AM lane miles from 2021 to 2045 – 385 and 350 miles, respectively.

Facility Type								Diff	Ratio
Code	Facility type	2021	2023	2025	2030	2040	2045	2045-2021	2045/2021
1	Freeways	3,763	3,826	3,910	4,033	4,105	4,148	385	1.10
2	Major arterials	5,174	5,186	5,207	5,280	5,405	5,524	350	1.07
3	Minor arterials	7,437	7,459	7,504	7,558	7,703	7,725	288	1.04
4	Collectors	5,699	5,733	5,777	5,854	5,896	5,906	206	1.04
5	Expressways	956	956	982	993	1,077	1,077	121	1.13
6	Ramps	380	385	390	390	393	393	13	1.03
		23,409	23,544	23,770	24,109	24,579	24,771	1,362	1.06

Table 3-18 AM lane-miles for the 2022	Jodate to Visualize 2045 highwa	v networks by Facility Type

"I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables \AM_Lane_Mile.xlsx, lanemii_Crosstab_Rev_FTYPE.s"

3.3 Transit Network Files

The transit network consists of transportation infrastructure, represented via nodes and links, plus the transit service that runs over that infrastructure. The transportation infrastructure includes the highway network, which is used by buses, and transit-only infrastructure, such as transit stations and rail links. The input files used to construct the transit networks are listed in Table 3-19.

Filename	Description	Туре	Source
Station.dbf	Station file: Metrorail, Comm.Rail, LRT stations/PNR lots & bus PNR lots	DBF	Geodatabase
AreaWalk.txt	Used to calculate zonal percent walk to transit values	Text	Travel Model-generated
met_node.tb	Metrorail stations	Text	Geodatabase
com_node.tb	Commuter rail stations	Text	Geodatabase
Irt_node.tb	LRT stations/stops	Text	Geodatabase
new_node.tb	BRT/streetcar stations/stops	Text	Geodatabase
met_pnrn.tb	Metrorail PNR lots	Text	Geodatabase
com_pnrn.tb	Commuter rail PNR lots	Text	Geodatabase
bus_pnrn.tb	Bus PNR lots	Text	Geodatabase
lrt_pnrn.tb	LRT PNR lots	Text	Geodatabase
new_pnrn.tb	BRT/streetcar PNR lots	Text	Geodatabase
met_link.tb	Metrorail links	Text	Geodatabase
com_link.tb	Commuter rail links	Text	Geodatabase
Irt_link.tb	LRT links	Text	Geodatabase
new_link.tb	BRT/streetcar links	Text	Geodatabase
met_bus.tb	Transfer link (walk) between Metrorail station and bus stop	Text	Geodatabase
com_bus.tb	Transfer link (walk) between commuter rail station and bus & LRT stop	Text	Geodatabase
Irt_bus.tb	Transfer link (walk) between LRT station and bus stop	Text	Geodatabase
new_bus.tb	Transfer link (walk) between BRT/streetcar stop and bus stop	Text	Geodatabase
MODE1AM,MODE10AM.tb	AM transit line files	Text	Geodatabase
MODE10P,MODE100P.tb	Off-peak transit line files	Text	Geodatabase

Table 3-19 Listing of transit network input files

Ref: "I:\ateam\docum\FY15\2014LRTP_Network_Report\NW_Report_Tables\v23_inputs.xlsx"

The input files are intended to serve as extensions to the highway network, which provides the infrastructure for bus and rail service. The table indicates that all the transit link, node and line/route elements, and station file are produced directly from the geodatabase, with one exception: the

AreaWalk.txt file which contains zonal walk-to-transit market areas. The Ver. 2.4 Travel Model includes an automated/integrated transit walkshed process. The process is run using a Python/ArcPy script and does not require manual intervention from the user. Before discussing the individual input files, the next section discusses transit and non-transit mode codes used in the transit network.

3.3.1 Transit and Non-Transit Mode Codes

The transit network consists of various types of transit services and transit vehicles. For example, a bus typically operates on a road in mixed traffic (i.e., with private vehicles, such as cars and trucks). But a bus can also operate as bus rapid transit (BRT), meaning that it may use a combination of normal roads (mixed traffic) and bus-only links/segments (separate right of way). Similarly, there are many rail transit modes that operate now, or will operate in the future, in the Washington, D.C. area, such as Metrorail, commuter rail, light rail transit (LRT) and streetcar. In terms of network coding, we currently differentiate the following six transit modes:

- Local bus (LB)
- Commuter/Express bus (CB)
- Metrorail (MR)
- Commuter rail (CR)
- Light rail transit (LRT)
- Bus rapid transit (BRT) and streetcar (SR)

The last mode, BRT and streetcar, is designated for transit service that travels on a *combination* of separate right of way (where the vehicles are not mixed with other traffic) and regular streets (where the vehicles are mixed with other traffic). By contrast, the LRT mode is designed to be used for transit service that travels *predominantly* on its own right of way (hence, it is not encumbered by other traffic). Historically, the coding practice by COG/TPB staff has been to distinguish three separate categories for both local and express bus service:

- Metrobus
- Non-Metrobus, inner jurisdictions (referred to as "other primary")
- Non-Metrobus, outer jurisdictions (referred to as "other secondary")

This results in the ten transit modes shown in Table 3-20.

Mode Code	Mode Description
1	Local bus: Metrobus (also includes DC Circulator bus)
2	Express bus: Metrobus
3	Metrorail
4	Commuter rail
5	Light rail
6	Local bus: Other primary service (inner jurisdictions)
7	Express bus: Other primary service (inner jurisdictions)
8	Local bus: Other secondary service (outer jurisdictions)
9	Express bus: Other secondary service (outer jurisdictions)
10	BRT/streetcar

Table 3-20 Transit mode codes

The transit path-builder, TRNBUILD, can combine average headways (frequencies) and run times (time from start to finish of the route), when two or more transit lines share the same link, via a technique known as "line combining." The line combining can result in new, equivalent average headways and run time, but "TRNBUILD's line-combining process combines only lines with the same mode."²¹

There are currently about 28 transit agencies represented in the transit networks used by the TPB travel demand forecasting model, as shown in Table 3-21. For each transit agency, this table shows the agency abbreviations, the main services offered by each agency, and the modes of travel offered. So, for example, in terms of services, WMATA offers Metrorail, Metrobus, Metroway, and REX. In terms of modes, WMATA has heavy rail (HR), local bus (LB), express/commuter bus (CB), and Bus Rapid Transit (BRT: Metroway). The lists of services and modes are for both the current time and the future. So, for example, Fairfax Co. DOT is listed as offering BRT, because it is one of the future services that is modeled in the transit network (US 1 BRT). As noted below the table, if the transit agency is part of the National Transit Database (NTD), the 2017 annual ridership is shown in this table. However, it is not always clear which transit services are included in the NTD ridership totals. For example, in the case of WMATA, the NTD total includes Metrorail and Metrobus, but it is not clear to us if the NTD value includes Metroway and REX.

Table 3-22 provides an equivalency between transit modes and transit services.

²¹ Citilabs, Inc., "Cube Voyager Reference Guide, Version 6.4.1" (Citilabs, Inc., September 30, 2015), 1004.

Table 3-21 Transit agencies in the Washington, D.C. area (TPB modeled area)

		3-	2-		Modes			Incl.	Incl.	2017	7 5 digit
			Letter		(Current			in TPB	in NTD	Annual	I NTI
Agency	Abbrev.	Code	Code	Services (Current and Future)	and Future)	City/County	State	Model?	Database?	Trips	5 II
1 Washington Metropolitan Area Transit Authority	WMATA	WMA	WM	Metrorail, Metrobus, Metroway, REX	HR, LB, CB, BRT	Multiple	Multiple	У	у	347,960,762	3003
2 District Department of Transportation	DDOT	DCT	DC	DC Circulator, DC Streetcar	LB, SR	Washington	DC	у	у	4,946,911	. 3011
				MARC Commuter Rail, MTA bus, MTA Commuter, Lee							
				Coaches, St. Mary's Transit System, Corridor Cities							
3 Maryland Transit Administration	MTA	MTA	MT	Transitway (CCT), Purple Line LRT	CR, LB, CB, BRT	Multiple	MD	у	у	9,174,765	3003
4 Amtrak	Amtrak	AMT	AM	Amtrak (operates some MARC commuter rail service)	CR	Multiple	Multiple	У	n		
5 Potomac and Rappahannock Transportation Commission	PRTC	PRT	PR	Virginia Railway Express (VRE), OminRide, OmniLink	CR, CB	Multiple	VA	у	у	3,874,333	3007
6 Northern Virginia Transportation Commission	NVTC	NVT	NV	Virginia Railway Express (VRE)	CR	Multiple	VA	у	у	4,683,000	30073
7 Montgomery Co. Dept. of Transporta., Div. of Transit Svcs	MCDOT	MCT	MC	Ride-On	LB	Montgomery Co.	MD	у	у	22,479,212	3005:
8 Fairfax Co. Dept. of Transportation	FFXDOT	FFX	FC	Fairfax Connector, US 1 BRT, Tysons Circulator	LB, BRT	Fairfax Co.	VA	У	у	8,463,046	30068
9 Prince George's Co.	PGCO	PGC	PG	TheBus	LB	Prince George's Co.	MD	у	у	3,009,610	3008
10 Arlington Co.	ART	ART	AR	Arlington Transit (ART)	LB	Arlington Co.	VA	у	у	3,356,638	3008
11 Alexandria Transit Company	ALEX	ALX	AL	DASH Bus	LB	Alexandria	VA	у	n		
12 City of Fairfax	CUE	CUE	CU	City-University-Energysaver (CUE) Bus	LB	City of Fairfax	VA	у	у	630,694	3005
13 TransIT Services of Frederick County	TransIT	FRM	FM	TransIT	LB	Frederick Co.	MD	у	у	601,324	30072
14 Loudoun County	LCTrans	LCT	LC	Loudoun Co. Commuter Bus (LC Transit)	СВ	Loudoun Co.	VA	у	у	1,721,175	3008:
15 Annapolis Department of Transportation	ANDOT	ANN	AN	Annapolis Transit	LB	Annapolis	MD	У	у	0	30040
16 Howard Transit	HT	HOW	HT	Howard Transit	LB	Howard Co.	MD	у	у	832,065	3004
17 Columbia Transit System	COLUM	COL	CO		LB	Columbia	MD	у	n		
18 FREDericksburg Regional Transit (FRED)	FRED	FRD	FV	FRED	LB	Fredericksburg	VA	у	у	0	30079
19 Carroll Transit System	CARR	CAR	CA		LB	Carroll Co.	MD	у	у	0	30092
20 City of Winchester	WinTran	WNT	WN	WinTran	LB	Winchester	VA	у	у	0	30099
21 Martz Group	NCW	NCW	NC	National Coach Works of Virginia, MTA Commuter	СВ	Multiple	Multiple	у	у	89,283	3010
22 Metropolitan Washington Airports Authority	MWAA	MWA	MW	Washington Flyer	SB	Multiple	VA	у	n		
23 Anne Arundel County	AAR	AAR	AA		LB	Anne Arundel Co.	MD	у	у	243,377	30129
24 Calvert County, Maryland	CALV	CAL	CL	Calvert Co. Bus	LB	Calvert Co.	MD	у	n		
25 Regional Transportation Agency of Central Maryland (RTA)	RTA	RTM	RM	City of Laurel Bus	LB	Multiple	MD	у	n		
26 City of Bethesda	BethCirc	BEC	BC	Bethesda Circulator	LB	Bethesda	MD	у	n		
27 Transportation Association of Greater Springfield (TAGS)	TAGS	TAG	TG	TAGS (along with WMATA)	LB	Springfield	VA	у	n		
28 Charles Co.	CHAR	CHS	СН	Vango	SB	Charles Co.	MD	У	У	858,324	3008
Modes											
Rail modes: heavy rail (HR), commuter rail (CR), light rail (I	RT), and s	treetca	ar (SR)								
Bus modes: local bus (LB), commuter/express bus (CB), Bu				uttle bus (SB)							

If the transit agency is part of the National Transit Database (NTD), the 2017 annual ridership is shown in this table. However, it is not always clear which transit services are included in the NTD ridership totals. For example, in the case of WMATA, the NTD total includes Metrorail and Metrobus, but it is not clear if it includes Metroway and REX.

Ref: "I:\ateam\docum\FY18\2016LRTP_OFFCYCLE_NETWORK REPORT\Rpt_Tables\dc_area_transit_agencies_2018_v3.xlsx"

	3-22 Equivalency between t		
Mode	Mode Description	Abbreviation/	Transit Service
No.		Prefix	
1	Local Metrobus	"WM01 - 97, A - Z"	WMATA (DC, Alex., Falls Church, & MTG, PG, ARL, FFX Counties)
		"DC"	District of Columbia Circulator
2	Express Metrobus	"WM05 - 29"	WMATA (ARL, ALEX, FFX)
		"REX"	WMATA (FFX. Co.)
3	Metrorail	"WMRED"	RED Line
		"WMBLU"	BLUE Line
		"WMGRN"	GREEN Line
		"WMORN"	ORANGE Line
		"WMYEL"	YELLOW Line
		"WMSILV"	SILVER Line
4	Commuter Rail	"VFRED"	Frederick Line (VRE)
•		"VMAS"	Manassas Line (VRE)
		"MBR"	Brunswick Line (MARC)
		"MCAM"	Camden Line (MARC)
		"MP"	
			Penn Line (MARC)
		"MFRED"	Frederick City Line (MARC)
_		"AMTK"	Amtrak Service
	Light Rail	"PURPLE"	Purple Line -MTA (Bethesda -New Carrollton)
6	Other Primary - Local Bus	"ART"	Arlington County Bus (ART)
		"DAT"	City of Alexandria Bus (DASH)
		"F"	Fairfax County Bus
		"GO"	Prince Georges County Bus (TheBus)
		"RO"	Montgomery Co. Ride-On Bus
		"SG"	Fairfax City Bus (CUE)
		"TYSL"	Tyson's Circulator
7	Other Primary - Express Bus	"DAT"	City of Alexandria Bus (DASH)
	· ·	"F"	Fairfax County Bus
8	Other Secondary - Local Bus	"ANN"	City Of Annapolis Bus
	•	"CCATS"	Carroll County Bus
		"CC"	Calvert County Bus
		"FT"	Frederick County Bus
		"HT"	Howard County Bus
		"["	City of Laurel Bus
		 "LT"	· · · · · · · · · · · · · · · · · · ·
			Loudoun County Local Bus
		"OL"	OMNI-LINK (PrinceWilliam Co. Local)
		"VF"	Fredericksburg, Va (VRE Bus)
		"VG"	Charles County Bus (VanGO)
		"ST"	St Mary's County Bus
9	Other Secondary - Express Bus	"LC"	Lee Coaches Commuter Bus
		"LCS"	Loudoun Co. Commuter Bus
		"LINK"	Washington Flyer- Dulles/WFC (MWAA)
		"MT"	Maryland MTA Bus (Frederick, Howard, Anne Arundel,
			Calvert, St Mary's, & Charles counties)
		"OR"	OMNI-RIDE (Prince William Co. Commuter Bus)
		"PQ"	Quicks Commuter Bus (Fredericksburg, Spotsylvania & Stafford Counties)
		"SDC"	Nat'l Coach/Martz Bus (Fredericksburg, Spotsylvania & Stafford Co's)
10	BRT/ Streetcar	"MWAY"	US 1 (Alexandria, Arlington) Metroway BRT
	,	"DCST"	DC Streetcar
		"US1BRT"	US 1 (Fairfax) BRT
		"CCTBRT"	Corridor Cities Transit Way
		"VIERSBRT"	Between Rockville Metrorail and Wheaton Metro Station
		"29BRT"	Silver Spring Transit Center to Burtonsville
		"355BRT"	Between Clarksburg Outlets and Rockville Metro
		"NHBRT"	New Hampshire Ave- Colesville PNR-Takoma Metro
		"NBETHBRT"	North Bethesda Transitway
		"RANDBRT"	Randolph Road BRT

Ref: "I:\ateam\docum\fy19\V2.3.75_Visualize2045NetworkReport\Report Tables\Transit_NetWrk_Mode_Codes.xlsx"

According to the rules of TRNBUILD, a transit path includes both transit and non-transit links. The transit links would include any movement on a transit vehicle, and these transit links would be categorized by the 10 transit modes previously mentioned. The non-transit links in a transit path are associated with accessing the transit service, transferring between transit services (especially those represented by different mode codes), and egressing from the transit service. In TRNBUILD vernacular, non-transit links are also called "support" links. Transit path-building and assignment are conducted in production/attraction format, so a transit path goes from a production zone to an attraction zone. At the production end of a transit trip, it is assumed that one will access the transit service via one of two modes: walking or driving. Walking includes biking. At the attraction end of a transit trip, it is assumed that people do not egress from the transit system via car. Again, biking is considered part of walking. Also, transfers need to be made, such as from a rail station to a bus stop, and from a park-and-ride (PNR) lot to the associated transit stop. The five current mode codes used for these "non-transit" links are shown in Table 3-23.

Mode	Mode Description
Code	
11	Drive-access to transit
12	Transfer link between rail (including BRT) and rail/non-rail transit (walk)
13	Sidewalk link (walk)
14	(Unused)
15	Transfer link between park-and-ride (PNR) lot and transit stop (walk)
16	Walk access to/egress from transit

Table 3-23 Non-transit mode codes used in TRNBUILD

3.3.2 Rail Station File

The "station file" (station.dbf) contains information about Metrorail stations, commuter rail stations, light rail stations, bus rapid transit stations/stops, streetcar stations/stops, express-bus bus stops, and park-and-ride (PNR) lots that serve these stations/stops. The variables included in the station file are shown in Table 3-24.

As mentioned in the previous section, there are 10 transit mode codes and five non-transit mode codes. The station file uses its own "mode code," which is a letter, instead of a number, as shown in Table 3-24. The station file also includes an access distance code ("NCT"), which controls the number, extent, and directionality of PNR/KNR access links generated for each parking lot. The acceptable values for the access distance code are shown in Table 3-25.

Name	Туре	Field Description
SEQNO	N	Sequence Number
MM	C	Mode Code (M=Metrorail, C=Commuter rail, B=Bus, L=Light rail, N= BRT/streetcar)
NCT	Ν	Access distance code (1, 2, 3, 0, 9, 8) (See Table 3-25)
STAPARK	С	Does the station have a park-and-ride lot? (Y=yes; blank=no)
STAUSE	С	Is the station in use for the given year? (Y=yes; blank=no)
SNAME	С	Station Name/PNR lot name
STAC	N	Station centroid number (5001-7999), also known as a park-and-ride (PNR) lot centroid or a dummy PNR centroid"
STAZ	N	For the purposes of path building, the TAZ (1-3722) that represents the location of the station PNR lot. Usually the closest TAZ to the PNR lot.
STAT	N	Station Node (8000-8999, 9000-9999, 10000-10999)
STAP	N	Station park-and-ride (PNR) node number (11000-13999)
STAN1	Ν	Station bus node #1 (used to generate a station-to-bus-node connector)
STAN2	Ν	Station bus node #2 (used to generate a station-to-bus-node connector)
STAN3	N	Station bus node #3 (used to generate a station-to-bus-node connector)
STAN4	Ν	Station bus node #4 (used to generate a station-to-bus-node connector)
STAPCAP	Ν	Parking capacity (number of spaces at the PNR lot)
STAX	Ν	X coordinate of station/PNR lot (MD State Plane, NAD83, feet)
STAY	Ν	Y coordinate of station/PNR lot (MD State Plane, NAD83, feet)
STAPKCOST	Ν	Peak period parking cost (daily cost, 2007 cents)
STAOPCOST	Ν	Off-peak parking cost (hourly cost, 2007 cents)
STAPKSHAD	Ν	Peak-period shadow price (currently not used)
STAOPSHAD	Ν	Off-peak-period shadow price (currently not used)
FIRSTYR	Ν	Year of Station/PNR lot Opening (unused by scripts, but used as metadata)
STA_CEND	Ν	Project ID (Metadata)
STWALKTM	Ν	Metrorail station escalator time (in minutes) ²² (currently not used)

Table 3-24 Variables in the transit station file (Station.dbf) (updated10-22-21)

Table 3-25 Transit access distance codes (NCT)

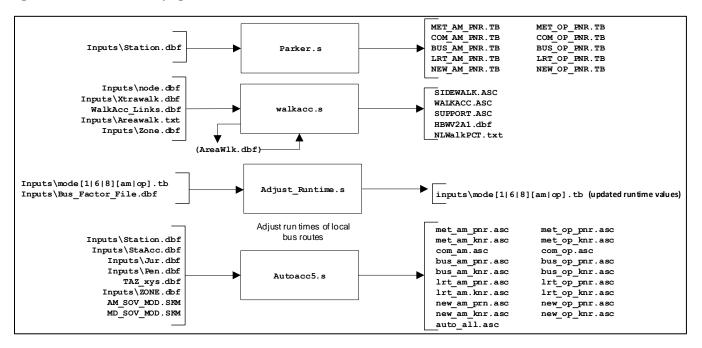
Access Dist.	
Code	Interpretation
1	End-of-the-line station (e.g., Shady Grove Metro)
2	Intermediate station (e.g., Rockville Metro)
3	PNR close to a CBD (e.g., Rhode Island Ave. Metro, Fort Totten)
0	Only KNR-access links generated (e.g., Braddock Road, National Airport, Clarendon)
9	Metrorail sta. in use, but no PNR/KNR access (e.g., Dupont Circle, Farragut North, Metro Ctr.)
8	Pentagon Metro Sta., allows for very long KNR links, to represent "slugging" (informal carpool)

²² Ron Milone to Files, "Metrorail Escalator Time Estimation," Memorandum, December 2, 2016.

Table 3-26 shows the designated ranges for station centroids and station nodes associated with Metrorail, commuter rail, LRT, and BRT/streetcar.

Mode	Mode Code	Station Centroid	Station Node Range
		Range	
Metrorail (Mode 3)	М	5000-5999	8000-8999
Commuter rail (Mode 4)	С	6000-6999	9000-9999
Light rail transit (Mode 5)	L	Not used	10000-10499
Bus rapid transit/streetcar (Mode 10)	N	Not used	10500-10999
Bus (Modes 1, 2, 6-9)	В	Not used	Not used

Table 3-26 Station centroid and station node range by mode


3.3.3 Walk- and Drive-Access to Transit

As stated earlier, transit path-building and assignment are conducted in production/attraction format, so a transit path is constructed from a production zone to an attraction zone. At the production end of a transit trip, it is assumed that one will access the transit service via one of two modes: walking or driving. Walking includes biking. At the attraction end of a transit trip, it is assumed that there is only one egress mode: walking. This assumes that people do not egress from the transit system via car.

A series of Cube Voyager scripts are used as part of the transit network building process to enable automatic generation of transit access and transfer links, including zonal walk access links, PNR lot-to-rail station links, and auto access links (TAZ-to-station links). These are non-transit modes that are used to access transit and transfer between transit services and have transit mode codes of 11-16 as shown in Table 3-23. Further details can be found in Chapter 21 of the Gen2/Version 2.4 model User's Guide, which discusses the automatic generation of transit access, auto-access links, and walk-access links.

As shown in Figure 3-14, there are three Cube Voyager scripts that are used for developing access links:

- WALKACC.S: Used to develop zonal walk-access links
- AUTOACC5.S: Used to generate zonal drive-access links
- PARKER.S: Used to generate walk connections between PNR lots and rail stations

Figure 3-14 Process for developing walk-access and drive-access links

As noted in the Gen2/Version 2.4 Travel Model user's guide, the automated approach for generating these links has greatly streamlined the transit network coding process. All three of these programs were originally developed as stand-alone Fortran programs developed by AECOM Consult. TPB staff converted these three Fortran programs to Cube Voyager scripts.

WALKACC.S requires the following input files:

- Node.dbf: A file with the X and Y coordinates of all the transit stop nodes
- Xtrawalk.dbf: A file with extra/user-specified walk links, which can be used in cases where the background highway network lacks sufficient detail to provide adequate walk access (it is assumed that one can walk on all highway links, except freeways, expressways, and ramps).
- WalkAcc_Links.dbf: A list of highway links that can be used for generating walk-access links (developed by MODNET.S)
- Areawalk.txt: A file containing information needed to calculate the zonal percent-walk-totransit (PWT) values. An excerpt from this file can be found in Figure 3-15. This file contains the following variables:
 - **TAZID**: TAZ number.
 - **TAZAREA**: Area of the TAZ in square miles.
 - MTLRTSHR: Area of the TAZ (sq. mi.) within a short (0.5 mile) walk of Metrorail or LRT service
 - **MTLRTLNG**: Area of the TAZ (sq. mi.) within a long (1.0 mile) walk of Metrorail or LRT service
 - **ALLPKSHR**: Area of the TAZ (sq. mi.) within a short (0.5 mile) walk of any transit service (including Metrorail and LRT) in the AM peak period

- **ALLPKLNG**: Area of the TAZ (sq. mi.) within a long (1 mile) walk of any transit service (including Metrorail and LRT) in the AM peak period
- **ALLOPSHR**: Area of the TAZ (sq. mi.) within a short (0.5 mile) walk of any transit service (including Metrorail and LRT) in the **off-peak** period
- **ALLOPLNG**: Area of the TAZ (sq. mi.) within a long (1 mile) walk of any transit service (including Metrorail and LRT) in the **off-peak** period
- Zone.dbf: Standard zonal attribute input file.
- HBWV2A1.dbf: A file with zonal information that is both created by WALKACC.S and then later read into WALKACC.S.

This file need not be sorted by TAZ (as can be seen in Figure 3-15).

Figure 3-15 An excerpt from the AreaWalk.txt file

TAZID	TAZ_AREA	MTLRTSHR	MTLRTLNG	ALLPKSHR	ALLPKLNG	ALLOPSHR	ALLOPLNG
2633	0.0540	0.0000	0.0000	0.0540	0.0540	0.0540	0.0540
2634	0.1897	0.0000	0.0000	0.1897	0.1897	0.1897	0.1897
2635	0.6364	0.0000	0.0000	0.4804	0.6364	0.4804	0.6364
2636	0.4917	0.0000	0.0000	0.4917	0.4917	0.4917	0.4917
2637	1.2188	0.0000	0.0000	1.2188	1.2188	1.1620	1.2188
2638	0.6354	0.0000	0.0000	0.4923	0.6354	0.5544	0.6354
2639	0.6991	0.0000	0.0000	0.4743	0.6991	0.4743	0.6991
2640	0.0593	0.0000	0.0000	0.0593	0.0593	0.0593	0.0593
259	0.6207	0.3757	0.6183	0.4934	0.6207	0.4891	0.6207
260	0.4965	0.0000	0.0303	0.4232	0.4965	0.4232	0.4965
1788	1.4192	0.0000	0.0000	0.5475	1.1463	0.5475	1.1463
1789	0.2863	0.0000	0.0412	0.2863	0.2863	0.2863	0.2863
1790	0.3237	0.0000	0.0537	0.3237	0.3237	0.3237	0.3237
1791	0.2910	0.0000	0.0000	0.2661	0.2910	0.2661	0.2910
1792	0.1824	0.0000	0.0029	0.1824	0.1824	0.1824	0.1824
1793	0.1622	0.0000	0.0000	0.1622	0.1622	0.1622	0.1622
1794	0.1026	0.0000	0.0000	0.1026	0.1026	0.1026	0.1026
1795	0.1574	0.0000	0.0000	0.1574	0.1574	0.1574	0.1574
1796	0.9296	0.0000	0.0000	0.9296	0.9296	0.9296	0.9296
1797	0.3545	0.0000	0.0000	0.3545	0.3545	0.3545	0.3545
1798	0.9034	0.0000	0.0083	0.8868	0.9034	0.8868	0.9034
1799	0.3016	0.0000	0.0000	0.3012	0.3016	0.3012	0.3016

The principal output files from WalkAcc.S are

- sidewalk.asc: Sidewalk links.
- walkacc.asc: Walk-access/walk-egress links.
- support.asc: Non-transit/support links.

Figure 3-16 shows walk access/egress links (mode 16) in TAZ 56, which is east of Foggy Bottom Metrorail Station. The thick, dark blue links, in the starburst shape, are the walk access/egress links for one zone (TAZ 56). The thin, dark blue segments are road links. The red links are transit-only links, and the thick, light blue and green links are the Metrorail links (Metrorail's Orange/Blue Line).

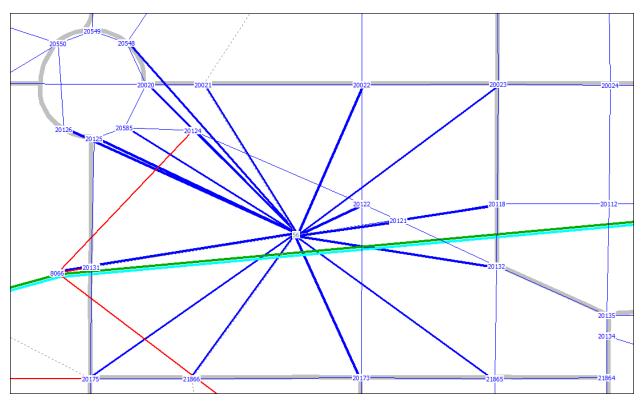
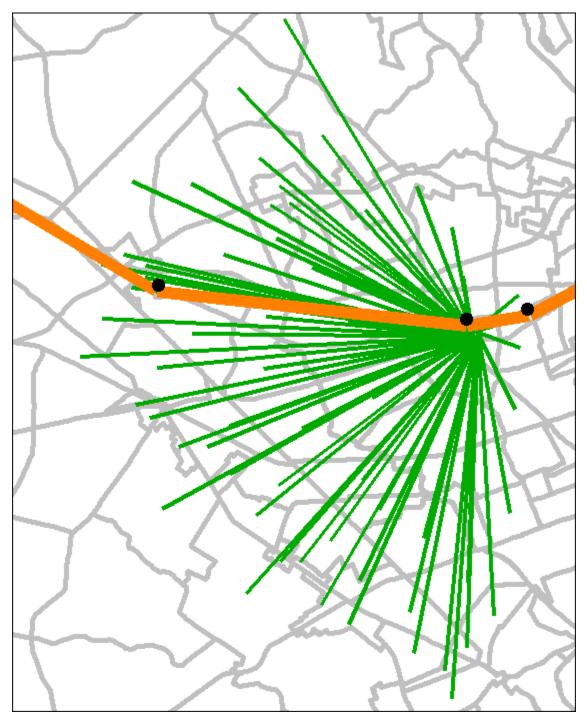



Figure 3-16 Walk access/egress links in TAZ 56, east of Foggy Bottom Metrorail Station

Ref: "L:\modelRuns\fy14\Ver2.3.52_Conformity2013LRTP_Xmittal\2010_Final\zonehwy.net"; "support_mode16_taz56.asc" "MODE3AM.TB"

AutoAcc5.s requires the eight input files shown in Figure 3-14. Figure 3-17 shows an example of the drive-access links (mode 11) associated with the Ballston Metrorail Station park-and-ride (PNR) lot. The lot is located just to the south of the station, which appears as a black dot on the orange line representing Metrorail's Orange Line. Notice that the star-burst shape of the auto access links is not a simple circle, but rather has a directional orientation, reflecting the fact the people have less tendency to back-track when looking for parking at the production end of their trip.

Figure 3-17 Drive-access links associated with the Ballston Metrorail Station PNR lot

Ref: "L:\modelRuns\fy14\Ver2.3.52_Conformity2013LRTP_Xmittal\2010_Final\zonehwy.net"; "MODE3AM.TB" "auto_all_ballston_knr.asc" "auto_all_ballston_pnr.asc" "support.asc"

3.3.4 Station Coordinate Files

The files in Table 3-19 that end with "_node.tb" are the station coordinate files:

- Met_node.tb: Metrorail stations
- Com_node.tb: Commuter rail stations
- LRT_node.tb: LRT stations/stops
- New_node.tb: BRT and/or streetcar stations/stops

These files come directly from the geodatabase. The file extension of "TB" indicates "TRNBUILD" and was introduced by COG/TPB staff a number of years ago to differentiate the files from those formatted for the previous transit path builder, TRNPTH ("TP"). An excerpt from the Metrorail station coordinate file (met_node.tb) can be seen in Figure 3-18. Coordinates are Maryland State Plane, NAD 1983, in feet.

ady Grove
ckville
inbrook
ite Flint
osvenor
dical Center
thesda
iendship Heights
nleytown
n Ness-UDC
eveland Park
odley Park-Zoo
oont Circle
rragut North
tro Center
llery Place
diciary Square
ion Station
de Island Ave
ookland-CUA
rt Totten
coma

Figure 3-18 Excerpt from the Metrorail station coordinate file (met_node.tb)

3.3.5 Transit Parking Lot Coordinate Files

The files in Table 3-19 that end with "_pnrn.tb" are the transit parking lot coordinate files:

- met_pnrn.tb: Metrorail PNR lot coordinates
- com_pnrn.tb: Commuter rail PNR lot coordinates
- bus_pnrn.tb: Bus PNR lot coordinates

- Irt_pnrn.tb: LRT PNR lot coordinates
- new_pnrn.tb: BRT and/or streetcar PNR lot coordinates

An excerpt from the Metrorail PNR lot coordinate file (met_pnrn.tb) can be seen in Figure 3-19. Coordinates are Maryland State Plane, NAD 1983, in feet.

XY	NODE=	11001	Х=	1265315	Υ=	529089	;;Shady Grove
XY	NODE=	11002	Х=	1270959	Υ=	516684	;;Rockville
XY	NODE=	11003	X=	1278613	Υ=	508435	;;Twinbrook
XY	NODE=	11004	X=	1281327	Υ=	503024	;;White Flint
XY	NODE=	11005	Х=	1283249	Υ=	496139	;;Grosvenor
XY	NODE=	11007	Х=	1285562	Υ=	479783	;;Bethesda
XY	NODE=	11019	Х=	1313784	Υ=	456689	;;Rhode Island Ave
XY	NODE=	11021	Х=	1311284	Υ=	468649	;;Fort Totten
XY	NODE=	11023	Х=	1303903	Υ=	483450	;;Silver Spring
XY	NODE=	11024	Х=	1299517	Ү=	491425	;;Forest Glen
XY	NODE=	11025	Х=	1297560	Υ=	499796	;;Wheaton
XY	NODE=	11026	Х=	1297615	Υ=	508431	;;Glenmont
XY	NODE=	11027	Х=	1338527	Υ=	489633	;;Greenbelt
XY	NODE=	11028	Х=	1332678	Υ=	476884	;;College Park
XY	NODE=	11029	X=	1324845	Υ=	472917	;;PG Plaza
XY	NODE=	11030	X=	1321380	Υ=	469383	;;West Hyattsville
XY	NODE=	11040	X=	1313758	Υ=	436270	;;Anacostia
XY	NODE=	11042	X=	1319454	Υ=	427220	;;Southern Avenue

Figure 3-19 An excerpt of the Metrorail PNR lot coordinate file (met_pnrn.tb)

3.3.6 Rail Links

The files in Table 3-19 that end with "_link. tb" are the rail link files:

- met_link.tb
- com_link.tb
- Irt_link.tb
- new_link.tb

An excerpt of the Metrorail rail link file (met_link.tb) is shown in Figure 3-20. The first record of the file is for the rail link (tracks) between Shady Grove Metrorail Station (8001) and Rockville Metrorail Station (8002). Metrorail is mode code 3 and this segment of track has a distance of 2.61 miles. The speed coded for each rail link is a function of the rail link distance.

Highway and Transit Networks used in the Air Quality Conformity Analysis of the 2022 Update to Visualize 2045 and the FY 2023-2026 TIP (Gen2/Ver. 2.4 Travel Model)

LINK	NODES=	8001-	8002	MODES=	03	DIST=	261	ONEWAY= N	SPEED=	40.05
LINK	NODES=	8002-	8003	MODES=	03	DIST=	213	ONEWAY= N	SPEED=	40.20
LINK	NODES=	8003-	8004	MODES=	03	DIST=	109	ONEWAY= N	SPEED=	22.00
LINK	NODES=	8004-	8005	MODES=	03	DIST=	135	ONEWAY= N	SPEED=	41.40
LINK	NODES=	8005-	8006	MODES=	03	DIST=	219	ONEWAY= N	SPEED=	44.60
LINK	NODES=	8006-	8007	MODES=	03	DIST=	102	ONEWAY= N	SPEED=	31.50
LINK	NODES=	8007-	8008	MODES=	03	DIST=	170	ONEWAY= N	SPEED=	34.40
LINK	NODES=	8008-	8009	MODES=	03	DIST=	91	ONEWAY= N	SPEED=	23.40
LINK	NODES=	8009-	8010	MODES=	03	DIST=	109	ONEWAY= N	SPEED=	33.30
LINK	NODES=	8010-	8011	MODES=	03	DIST=	55	ONEWAY= N	SPEED=	18.90
LINK	NODES=	8011-	8012	MODES=	03	DIST=	80	ONEWAY= N	SPEED=	21.30
LINK	NODES=	8012-	8013	MODES=	03	DIST=	115	ONEWAY= N	SPEED=	35.70
LINK	NODES=	8013-	8014	MODES=	03	DIST=	56	ONEWAY= N	SPEED=	15.30
LINK	NODES=	8014-	8015	MODES=	03	DIST=	79	ONEWAY= N	SPEED=	22.20
LINK	NODES=	8015-	8016	MODES=	03	DIST=	33	ONEWAY= N	SPEED=	17.40
LINK	NODES=	8015-	8068	MODES=	03	DIST=	46	ONEWAY= N	SPEED=	24.60

Figure 3-20 An excerpt of the Metrorail rail link file (met_link.tb)

3.3.7 Transfer Links

Non-transit links, or support links, include links to access the transit system, to egress from the transit system, and to transfer between transit routes. Transfer links are used to transfer between a rail or BRT mode (mode codes 3, 4, 5, and 10) and other rail/non-rail transit services in proximity by walk, such as from Metrorail to bus. Under current coding conventions, these transit transfer links are designated mode code 12. There are four transfer link files:

- met_bus.tb
- com_bus.tb
- Irt_bus.tb
- new_bus.tb

An excerpt from the file containing transfer links between Metrorail stations and bus stops is shown in Figure 3-21.

Figure 3-21 An excerpt from the file (met_bus.tb) containing transfer links (mode 12) between Metrorail stations and bus stops

N=	8001-	22395	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8001-	22397	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8002-	9005	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8002-	22351	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8002-	22370	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8003-	22344	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8003-	22672	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8004-	22332	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8004-	22670	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8005-	22327	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8006-	22054	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8007-	22048	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8008-	22864	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8009-	20718	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8010-	20753	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8011-	20756	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8012-	20763	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
N=	8013-	20503	ONEWAY=	N	MODES=	12	DIST	=	1	SPEED	=	3
	N= N= N= N= N= N= N= N= N= N= N= N= N= N	N= 8001- N= 8002- N= 8002- N= 8003- N= 8003- N= 8004- N= 8004- N= 8005- N= 8005- N= 8006- N= 8007- N= 8008- N= 8009- N= 8010- N= 8011- N= 8012-	N= 8001- 22397 N= 8002- 9005 N= 8002- 22351 N= 8002- 22370 N= 8003- 22344 N= 8003- 22672 N= 8004- 22332 N= 8004- 22670 N= 8004- 22670 N= 8004- 22670 N= 8005- 22327 N= 8006- 22054 N= 8007- 22048 N= 8008- 22864 N= 8010- 20753 N= 8010- 20753 N= 8011- 20756 N= 8012- 20763	N= 8001- 22397 ONEWAY= N= 8002- 9005 ONEWAY= N= 8002- 22351 ONEWAY= N= 8002- 22370 ONEWAY= N= 8003- 22370 ONEWAY= N= 8003- 22370 ONEWAY= N= 8003- 22672 ONEWAY= N= 8004- 22332 ONEWAY= N= 8004- 22670 ONEWAY= N= 8004- 22327 ONEWAY= N= 8005- 22327 ONEWAY= N= 8006- 22054 ONEWAY= N= 8007- 22048 ONEWAY= N= 8008- 22864 ONEWAY= N= 8010- 20753 ONEWAY= N= 8010- 20756 ONEWAY= N= 8011- 20756 ONEWAY= N= 8012- 20763 ONEWAY=	N= 8001- 22397 ONEWAY= N N= 8002- 9005 ONEWAY= N N= 8002- 22351 ONEWAY= N N= 8002- 22370 ONEWAY= N N= 8002- 22370 ONEWAY= N N= 8003- 22344 ONEWAY= N N= 8003- 22672 ONEWAY= N N= 8004- 22332 ONEWAY= N N= 8004- 22670 ONEWAY= N N= 8004- 22670 ONEWAY= N N= 8004- 22670 ONEWAY= N N= 8005- 22327 ONEWAY= N N= 8006- 22054 ONEWAY= N N= 8008- 22864 ONEWAY= N N= 8010- 20753 ONEWAY= N N= 8010- 20756 ONEWAY= <t< th=""><th>N= 8001- 22397 ONEWAY= N MODES= N= 8002- 9005 ONEWAY= N MODES= N= 8002- 22351 ONEWAY= N MODES= N= 8002- 22351 ONEWAY= N MODES= N= 8002- 22370 ONEWAY= N MODES= N= 8003- 2244 ONEWAY= N MODES= N= 8003- 22672 ONEWAY= N MODES= N= 8004- 22332 ONEWAY= N MODES= N= 8004- 22670 ONEWAY= N MODES= N= 8004- 22670 ONEWAY= N MODES= N= 8005- 22327 ONEWAY= N MODES= N= 8006- 22054 ONEWAY= N MODES= N= 8008- 22864 ONEWAY= N MODES= N= 8010-</th><th>N= 8001- 22397 ONEWAY= N MODES= 12 N= 8002- 9005 ONEWAY= N MODES= 12 N= 8002- 22351 ONEWAY= N MODES= 12 N= 8002- 22351 ONEWAY= N MODES= 12 N= 8002- 22370 ONEWAY= N MODES= 12 N= 8003- 22344 ONEWAY= N MODES= 12 N= 8003- 22672 ONEWAY= N MODES= 12 N= 8004- 22332 ONEWAY= N MODES= 12 N= 8004- 22670 ONEWAY= N MODES= 12 N= 8005- 22327 ONEWAY= N MODES= 12 N= 8006- 22054 ONEWAY= N MODES= 12 N= 8008- 22864 ONEWAY= N MODES=</th><th>N= 8001- 22397 ONEWAY= N MODES= 12 DIST N= 8002- 9005 ONEWAY= N MODES= 12 DIST N= 8002- 22351 ONEWAY= N MODES= 12 DIST N= 8002- 22351 ONEWAY= N MODES= 12 DIST N= 8003- 22370 ONEWAY= N MODES= 12 DIST N= 8003- 22672 ONEWAY= N MODES= 12 DIST N= 8004- 22332 ONEWAY= N MODES= 12 DIST N= 8004- 22670 ONEWAY= N MODES= 12 DIST N= 8004- 22670 ONEWAY= N MODES= 12 DIST N= 8004- 22070 ONEWAY= N MODES= 12 DIST N= 8006- 22054 ONEWAY= N MODES= 12 DIST N= 8008- 22864</th></t<> <th>N= 8001- 22397 ONEWAY= N MODES= 12 DIST = N= 8002- 9005 ONEWAY= N MODES= 12 DIST = N= 8002- 22351 ONEWAY= N MODES= 12 DIST = N= 8002- 22351 ONEWAY= N MODES= 12 DIST = N= 8002- 22370 ONEWAY= N MODES= 12 DIST = N= 8003- 22672 ONEWAY= N MODES= 12 DIST = N= 8004- 22332 ONEWAY= N MODES= 12 DIST = N= 8004- 22670 ONEWAY= N MODES= 12 DIST = N= 8004- 22670 ONEWAY= N MODES= 12 DIST = N= 8005- 22327 ONEWAY= N MODES= 12 DIST = N= 8006- 22054</th> <th>N= 8001- 22397 ONEWAY= N MODES= 12 DIST = 1 N= 8002- 9005 ONEWAY= N MODES= 12 DIST = 1 N= 8002- 22351 ONEWAY= N MODES= 12 DIST = 1 N= 8002- 22351 ONEWAY= N MODES= 12 DIST = 1 N= 8002- 22370 ONEWAY= N MODES= 12 DIST = 1 N= 8003- 22672 ONEWAY= N MODES= 12 DIST = 1 N= 8004- 22332 ONEWAY= N MODES= 12 DIST = 1 N= 8004- 22670 ONEWAY= N MODES= 12 DIST = 1 N= 8004- 22670 ONEWAY= N MODES= 12 DIST = 1 N= 8006- 22054 ONEWAY= N MODES= 12 DIST = 1 N= 8008- <</th> <th>N= 8001- 22397 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8002- 9005 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8002- 22351 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8002- 22370 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8003- 22344 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8003- 22672 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8004- 22332 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8004- 22670 ONEWAY= N MODES= 12 DIST 1 SPEED N= 8005- 22327 ONEWAY= N MODES= 12 DIST 1</th> <th>N= 8001- 22397 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8002- 9005 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8002- 22351 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8002- 22351 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8003- 22344 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8003- 22672 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8004- 22332 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8004- 22670 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8006- 22054 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8006-</th>	N= 8001- 22397 ONEWAY= N MODES= N= 8002- 9005 ONEWAY= N MODES= N= 8002- 22351 ONEWAY= N MODES= N= 8002- 22351 ONEWAY= N MODES= N= 8002- 22370 ONEWAY= N MODES= N= 8003- 2244 ONEWAY= N MODES= N= 8003- 22672 ONEWAY= N MODES= N= 8004- 22332 ONEWAY= N MODES= N= 8004- 22670 ONEWAY= N MODES= N= 8004- 22670 ONEWAY= N MODES= N= 8005- 22327 ONEWAY= N MODES= N= 8006- 22054 ONEWAY= N MODES= N= 8008- 22864 ONEWAY= N MODES= N= 8010-	N= 8001- 22397 ONEWAY= N MODES= 12 N= 8002- 9005 ONEWAY= N MODES= 12 N= 8002- 22351 ONEWAY= N MODES= 12 N= 8002- 22351 ONEWAY= N MODES= 12 N= 8002- 22370 ONEWAY= N MODES= 12 N= 8003- 22344 ONEWAY= N MODES= 12 N= 8003- 22672 ONEWAY= N MODES= 12 N= 8004- 22332 ONEWAY= N MODES= 12 N= 8004- 22670 ONEWAY= N MODES= 12 N= 8005- 22327 ONEWAY= N MODES= 12 N= 8006- 22054 ONEWAY= N MODES= 12 N= 8008- 22864 ONEWAY= N MODES=	N= 8001- 22397 ONEWAY= N MODES= 12 DIST N= 8002- 9005 ONEWAY= N MODES= 12 DIST N= 8002- 22351 ONEWAY= N MODES= 12 DIST N= 8002- 22351 ONEWAY= N MODES= 12 DIST N= 8003- 22370 ONEWAY= N MODES= 12 DIST N= 8003- 22672 ONEWAY= N MODES= 12 DIST N= 8004- 22332 ONEWAY= N MODES= 12 DIST N= 8004- 22670 ONEWAY= N MODES= 12 DIST N= 8004- 22670 ONEWAY= N MODES= 12 DIST N= 8004- 22070 ONEWAY= N MODES= 12 DIST N= 8006- 22054 ONEWAY= N MODES= 12 DIST N= 8008- 22864	N= 8001- 22397 ONEWAY= N MODES= 12 DIST = N= 8002- 9005 ONEWAY= N MODES= 12 DIST = N= 8002- 22351 ONEWAY= N MODES= 12 DIST = N= 8002- 22351 ONEWAY= N MODES= 12 DIST = N= 8002- 22370 ONEWAY= N MODES= 12 DIST = N= 8003- 22672 ONEWAY= N MODES= 12 DIST = N= 8004- 22332 ONEWAY= N MODES= 12 DIST = N= 8004- 22670 ONEWAY= N MODES= 12 DIST = N= 8004- 22670 ONEWAY= N MODES= 12 DIST = N= 8005- 22327 ONEWAY= N MODES= 12 DIST = N= 8006- 22054	N= 8001- 22397 ONEWAY= N MODES= 12 DIST = 1 N= 8002- 9005 ONEWAY= N MODES= 12 DIST = 1 N= 8002- 22351 ONEWAY= N MODES= 12 DIST = 1 N= 8002- 22351 ONEWAY= N MODES= 12 DIST = 1 N= 8002- 22370 ONEWAY= N MODES= 12 DIST = 1 N= 8003- 22672 ONEWAY= N MODES= 12 DIST = 1 N= 8004- 22332 ONEWAY= N MODES= 12 DIST = 1 N= 8004- 22670 ONEWAY= N MODES= 12 DIST = 1 N= 8004- 22670 ONEWAY= N MODES= 12 DIST = 1 N= 8006- 22054 ONEWAY= N MODES= 12 DIST = 1 N= 8008- <	N= 8001- 22397 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8002- 9005 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8002- 22351 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8002- 22370 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8003- 22344 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8003- 22672 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8004- 22332 ONEWAY= N MODES= 12 DIST = 1 SPEED N= 8004- 22670 ONEWAY= N MODES= 12 DIST 1 SPEED N= 8005- 22327 ONEWAY= N MODES= 12 DIST 1	N= 8001- 22397 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8002- 9005 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8002- 22351 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8002- 22351 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8003- 22344 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8003- 22672 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8004- 22332 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8004- 22670 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8006- 22054 ONEWAY= N MODES= 12 DIST = 1 SPEED = N= 8006-

The station file, mentioned earlier, contains up to four "bus" nodes for each rail station. "Bus node" means any transit node near the rail station that should be connected with the rail station. So, for example, for the Rockville Metrorail Station (8002), the first "bus" node (STAN1) is 9005, which is not a bus stop, but rather a commuter rail station (the Rockville MARC station). The pairing of each rail station and its associated "bus" nodes forms the transfer links that are found in the transfer link files.

3.3.8 Transit Line/Route Files

The AM Peak and Off-Peak transit line files are text files that contain operational information about individual transit lines/routes, including the average headway (frequency) for the time-of-day period, the average scheduled running time for the time-of-day period, and the route itinerary, which are the nodes through which the transit passes. Transit routes can be designated one-way or two-way. Figure 3-22 shows an example of a transit line file in TRNBUILD format for Mode 1 (local bus: Metrobus and DC Connector). The TPB transit networks currently designate ten mode codes as listed in Table 3-20 and Table 3-22.

Figure 3-22 Example of a transit line/route file in TRNBUILD (TB) format

:\$ Scenario----> base :* DC Circulator ******************************** LINE NAME="DC98", OWNER="DC Circulator; NW 14TH ST & NW K ST; CALVERT ST NW & LANIER PL NW; 2015; base", ONEWAY= Y, MODE= 01, FREQ[1]= 10, RUNTIME= 30, N= 20072 -20426 -20425 -20424 -20423 21831 -20448 -20446 -20445, 21746 - 20413 21745 21822 21819 21744 - 20371 21826 - 20919, -20826 -20827 -20833 20829 -20605 20653 20652 21523 -20651, 20650 ;\$ Scenario----> base :* DC Circulator LINE NAME="DC985", OWNER="DC Circulator; CONNECTICUT AVE & 24TH ST; NW 14TH ST & NW I ST ; 2015; base", **ONEWAY= Y, MODE=** 01, FREQ[1]= 10, RUNTIME= 35, N= 20650 - 20651 21523 20652 20653 - 20605 20829 - 20833 - 20827, -20826 -20919 21826 -20371 21744 21819 21822 21745 -20413, 21746 -20445 -20407 -21766 21814 20406 20405 -20403 -20435, -20434 -20433 21631 20400 -20399 -20398 -20105 20104 20072

Ref: M:\fy17\CGV2_3_66_Conformity2016LRTP_Xmittal\2016_Base\Inputs\MODE1AM.TB

The average headways reflect the frequency of service, defined by the number of buses or rail cars that operate per hour per period (AM or off peak). The coded headways are subject to a maximum of 60 minutes during both AM peak and off-peak periods. Running time is defined as the average scheduled end-to-end route time in minutes during the given time-of-day period.

As was mentioned on page 56, in the path building process, transit routes that share the same mode code and share the same links can be combined, using TRNBUILD's line combination procedures, such that the traveler experiences a new combined headway and runtime for the set of common routes.

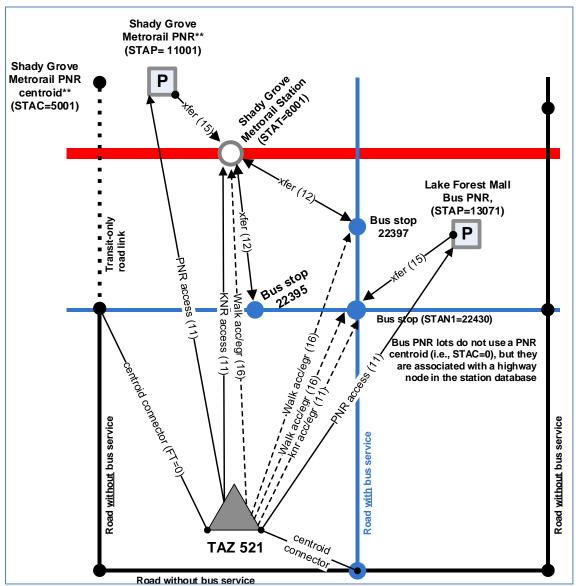
A transit line file is divided into a series of transit lines/routes. For example, Figure 3-22 shows two bus routes for the DC Circulator: the 98 and the 98 South. Each route in the file begins with "header" information. The header section of any transit route in a transit line file is described in Table 3-27.

File Name	Variable Name	Description
Mode <no.><per>.tb</per></no.>	LINE NAME	Abbreviation of transit service provider name
	OWNER	The OWNER variable is currently being used to store five fields, which are separated by semicolons: 1. Transit operator 2. Origin
		 Destination Year represented Scenario
	ONEWAY	Y/N (Y= Yes and N=No)
	MODE	Transit mode codes (1 - 10)
	FREQ[1]	Average time between successive arrivals (or departures) of transit vehicles on a given route for the period (AM or OP). Also known as average headway.
	RUNTIME	Average time (in min) for the transit vehicle to go from the start to the finish of its route, for the given period (AM or OP)

Table 3-27 Header section for each transit route in a transit line file

Key: <No.> = 1-10

<per> = AM (AM peak period) or OP (off-peak period).


After the route header information, there is a node itinerary, which is a list of nodes through which the route passes.

The file extension of "TB" in the names of the line files (also sometimes called "mode files") indicates "TRNBUILD" and was introduced by COG/TPB staff several years ago to differentiate the files from those formatted for the previous transit path builder, TRNPTH ("TP"). A more standard file extension for these types of files is "LIN," which stands for transit line/route.

3.3.9 Example of network coding

Figure 3-23 shows a diagram that illustrates the existing MWCOG/TRNBUILD convention for network coding around rail stations (Metro or commuter rail), park-and-ride lots, and bus service.

Figure 3-23 Existing MWCOG/TRNBUILD convention for network coding around rail stations, park-and-ride lots, and bus service

 $Ref: l: a team \ docum \ fy 22 \ Version 2.4 \ 2022 \ Update \ Visualize 2045 \ Network \ Report \ V2.4 network \ coding \ station \ diagr \ mwcog \ trnbuild.vsdx'' \ Network \ Network$

In Figure 3-23, numbers in parentheses are mode codes. For example, mode code 11 is drive access to transit, which can be either drive and park ("park and ride", PNR) or drive and drop off ("kiss and ride," KNR). Mode code 16 is for walk access or egress links. Two types of transfer links are shown in the diagram:

- Mode 12: Transfer between a rail mode and a non-rail transit mode (walk)
- Mode 15: Transfer between a PNR lot and the rail station (walk)

Also, the PNR node and the dummy PNR node are stored in the background highway network.

3.3.10 Transit route summaries

This section of the report presents transit route summaries. The network years available were discussed on Page 8 (essentially, 2021, 2023, 2025, 2030, 2040, and 2045).

Summaries of the AM peak period Metrorail routes are shown in Table 3-28. Note that Table 3-28 does not show data for 2045, since the Metrorail data for 2045 was the same as that for 2040. The table lists COG/TPB's transit route name, origin and destination stations, average headways, average run-times, line distances, and average line speed for service during the AM peak hour and Off-peak period. Table 3-29 presents the same information, but for the off-peak period. Note that the Red Line used to have two different routes:

- Red Line A: From Shady Grove (end of the line) to Glenmont (end of the line)
- Red Line B: From Grosvenor to Silver Spring

This was reflected in the route names, e.g., Red-A and Red-B. However, in the 2022 update to the plan Red Line B is discontinued. Note: Some routes are denoted "A" even though there is only one of them, such as Green Line A ("Grn-A").

Transit Route Name	Transit Yr.	Origin	Destination	Hdwy	RT (mins.)	Dist. (mi)	Spd (mph)
WMBLUA	2021	FRANCONIA/SPRINGFIELD	LARGO TWN CTR	8	64	30	28
WMGRNA	2021	GREENBELT	BRANCH AVE	8	47	23	29
WMORNA	2021	VIENNA	NEW CARROLLTON	8	57	26	27
WMREDA	2021	SHADY GROVE METRO	GLENMONT METRO	4	65	32	30
WMYELC	2021	GREENBELT	HUNTINGTON AV METRO	8	49	22	27
WMSILV	2021	Wiehle	LARGO	8	75	32	26
WMBLUA	2023	FRANCONIA/SPRINGFIELD	LARGO TWN CTR	10	66	30	27
WMGRNA	2023	GREENBELT	BRANCH AVE	10	47	23	29
WMORNA	2023	VIENNA	NEW CARROLLTON	10	57	26	27
WMREDA	2023	SHADY GROVE METRO	GLENMONT METRO	5	65	32	30
WMYELC	2023	GREENBELT	HUNTINGTON AV METRO	10	51	23	27
WMSILV	2023	ASHBURN	LARGO	10	90	43	29
WMBLUA	2025	FRANCONIA/SPRINGFIELD	LARGO TWN CTR	8	66	30	27
WMGRNA	2025	GREENBELT	BRANCH AVE	8	47	23	29
WMORNA	2025	VIENNA	NEW CARROLLTON	8	57	26	27
WMREDA	2025	SHADY GROVE METRO	GLENMONT METRO	4	65	32	30
WMYELC	2025	GREENBELT	HUNTINGTON AV METRO	8	51	23	27
WMSILV	2025	ASHBURN	LARGO	8	90	43	29
WMBLUA	2030	FRANCONIA/SPRINGFIELD	LARGO TWN CTR	8	66	30	27
WMGRNA	2030	GREENBELT	BRANCH AVE	8	47	23	29
WMORNA	2030	VIENNA	NEW CARROLLTON	8	57	26	27
WMREDA	2030	SHADY GROVE METRO	GLENMONT METRO	4	65	32	30
WMYELC	2030	GREENBELT	HUNTINGTON AV METRO	8	51	23	27
WMSILV	2030	ASHBURN	LARGO	8	90	43	29
WMBLUA	2040	FRANCONIA/SPRINGFIELD	LARGO TWN CTR	12	66	30	27
WMYELB	2040	FRANCONIA/SPRINGFIELD	GREENBELT	12	60	29	29
WMGRNA	2040	GREENBELT	BRANCH AVE	6	47	23	29
WMORNA	2040	VIENNA	NEW CARROLLTON	6	57	26	27
WMREDA	2040	SHADY GROVE METRO	GLENMONT METRO	3	65	32	30
WMYELA	2040	MT VERNON SQ/7TH ST-CONVENTION	HUNTINGTON AV METRO	6	27	11	24
WMSILV	2040	ASHBURN	LARGO	6	90	43	29

Table 3-28 AM peak-period Metrorail line summary by year: 2021, 2023, 2025, 2030 and 2040

Note: AM peak period is from 7:00 – 7:59 AM. Year 2045 Metrorail data is the same as 2040.

Source: 2022 Update to Visualize 2045 and FY 2023-2026 TIP

Transit Route Name	Transit Yr.	Origin	Destination	Hdwy	RT (mins.)	Dist. (mi)	Spd (mph)
WMBLUA	2021	FRANCONIA/SPRINGFIELD	LARGO TWN CTR	12	64	30	28
WMGRNA	2021	GREENBELT	BRANCH AVE	12	47	23	29
WMORNA	2021	VIENNA	NEW CARROLLTON	12	57	26	27
WMYELC	2021	GREENBELT	HUNTINGTON	12	49	22	27
WMSILV	2021	Wiehle	LARGO	12	75	32	26
WMREDA	2021	SHADY GROVE METRO	GLENMONT METRO	6	63	32	30
WMBLUA	2023	FRANCONIA/SPRINGFIELD	LARGO TWN CTR	12	66	30	27
WMGRNA	2023	GREENBELT	BRANCH AVE	12	47	23	29
WMORNA	2023	VIENNA	NEW CARROLLTON	12	57	26	27
WMYELC	2023	GREENBELT	HUNTINGTON	12	51	23	27
WMSILV	2023	ASHBURN	LARGO	12	90	43	29
WMREDA	2023	SHADY GROVE METRO	GLENMONT METRO	6	63	32	30
WMBLUA	2025	FRANCONIA/SPRINGFIELD	LARGO TWN CTR	12	66	30	27
WMGRNA	2025	GREENBELT	BRANCH AVE	12	47	23	29
WMORNA	2025	VIENNA	NEW CARROLLTON	12	57	26	27
WMYELC	2025	GREENBELT	HUNTINGTON	12	51	23	27
WMSILV	2025	ASHBURN	LARGO	12	90	43	29
WMREDA	2025	SHADY GROVE METRO	GLENMONT METRO	6	63	32	30
WMBLUA	2030	FRANCONIA/SPRINGFIELD	LARGO TWN CTR	12	66	30	27
WMGRNA	2030	GREENBELT	BRANCH AVE	12	47	23	29
WMORNA	2030	VIENNA	NEW CARROLLTON	12	57	26	27
WMYELC	2030	GREENBELT	HUNTINGTON	12	51	23	27
WMSILV	2030	ASHBURN	LARGO	12	90	43	29
WMREDA	2030	SHADY GROVE METRO	GLENMONT METRO	6	63	32	30

Table 3-29 Off-peak period Metrorail line summary by year: 2021, 2023, 2025, and 2030

Note: Off-peak period is from 10:00 AM- 2:59 PM Years 2040 and 2045 Metrorail data is the same as 2030 Ref: "I:\ateam\docum\FY22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\ 2022Update_Visualize2045_Met_Com_BRT_Files.xlsx"

Source: 2022 Update to Visualize 2045 and FY 2023-2026 TIP

Line summaries for commuter rail are shown in Table 3-30 and Table 3-31. Table 3-30 covers the AM peak period and Table 3-31 covers the off-peak period for years 2021, 2023, 2025 and 2030 and 2040 and implicitly 2045, since this year is the same as 2040).

Line summaries for light rail and BRT/ Streetcar are shown in Table 3-32 and Table 3-33. Table 3-32 covers the AM peak period summaries and Table 3-33 covers the off-peak period summaries for all the 2022 Update to Visualize 2045 AQC analysis forecast years (2021, 2023, 2025, 2030, 2040, and 2045). Unlike the Metrorail and Commuter rail summaries years 2040 and 2045 are not the same as 2030 (new service providers are shown in a shade of gray in Table 3-32 and Table 3-33).

	nook nou	ind commutor rail	summary by yoar	. 201	21 2023	2 2021	= 2020
		riod commuter rail					
	Transit Year	Origin	Destination		RT(mins.)	- · ·	
AMTK86I	2021	FREDERICKSBURG	UNION STATION VRE	60	79	54	41
MBR876	2021	BRUNSWICK STATION	UNION STATION	60	95	50	32
MBR878	2021	DUFFIELDS WVA	UNION STATION	60	111	62	34
MCAM847	2021	DORSEY	UNION STATION	60	54	25	28
MCAM840	2021	UNION STATION	DORSEY	60	47	25	32
MP407511	2021	BWI	UNION STATION	30	44	30	41
VIBR892	2021	FREDERICK	UNION	60	111	56	30
MCAM845	2021	DORSEY	WASHINGTON-UNION	60	50	25	30
/IP404	2021	WASHINGTON-UNION	BWI	60	32	22	41
/IP502	2021	UNION STATION	BWI	60	35	30	51
VIP409	2021	BWI	UNION STATION	60	34	30	53
/MAS321	2021	WASHINGTON- UNION	BROAD RUN	60	77	36	28
/MASS1I	2021	BROAD RUN AIRPORT VRE	UNION STATION	30	79	36	27
/FRED1I	2021	SPOTSYLVANIA	WASHINGTON-UNION	30	104	60	35
AMTK86I	2023	FREDERICKSBURG	UNION STATION VRE	60	81	54	40
/ICAM840	2023	UNION STATION	DORSEY	60	47	25	32
/IBR876	2023	BRUNSWICK STATION	UNION STATION	60	95	50	32
/BR878	2023	DUFFIELDS WVA	UNION STATION	60	111	62	34
ACAM847	2023	DORSEY		60	54	25	28
			UNION STATION			-	
/IP407511	2023	BWI	UNION STATION	30	44	30	41
/IBR892	2023	FREDERICK	UNION	60	111	56	30
/ICAM845	2023	DORSEY	WASHINGTON-UNION	60	50	25	30
VP404	2023	WASHINGTON-UNION	BWI	60	32	22	41
MP502	2023	UNION STATION	BWI	60	35	30	51
VIP409	2023	BWI	UNION STATION	60	34	30	53
/MAS321	2023	WASHINGTON-UNION	BROAD RUN	60	77	36	28
/MASS1I	2023	BROAD RUN AIRPORT VRE	UNION STATION	30	79	36	20
/FRED1I	2023	SPOTSYLVANIA	WASHINGTON-UNION	30	106	60	34
AMTK86I	2025	FREDERICKSBURG	UNION STATION VRE	60	81	54	40
VICAM840	2025	UNION STATION	DORSEY	60	47	25	32
VBR876	2025	BRUNSWICK STATION	UNION STATION	60	95	50	32
MBR878	2025	DUFFIELDS WVA	Union Station	60	111	62	34
MCAM847	2025	DORSEY	UNION STATION	60	54	25	28
/P407511	2025	BWI	UNION STATION	30	44	30	41
/BR892	2025	FREDERICK	UNION	60	111	56	30
					50	25	30
/ICAM845	2025	DORSEY	WASHINGTON-UNION	60		-	
VIP404	2025	WASHINGTON-UNION	BWI	60	32	22	41
/IP502	2025	UNION STATION	BWI	60	35	30	51
/IP409	2025	BWI	UNION STATION	60	34	30	53
/MAS321	2025	WASHINGTON-UNION	BROAD RUN	60	77	36	28
/MASS1I	2025	BROAD RUN AIRPORT VRE	UNION STATION	30	79	36	27
/FRED1I	2025	SPOTSYLVANIA	WASHINGTON-UNION	30	106	60	34
AMTK86I	2030	FREDERICKSBURG	UNION STATION VRE	60	81	54	40
MCAM840	2030	UNION STATION	DORSEY	60	47	25	32
/IBR876	2030	BRUNSWICK STATION	UNION STATION	60	95	50	32
/IBR878	2030	DUFFIELDS WVA	UNION STATION	60	111	62	34
MCAM847	2030	DORSEY	UNION STATION	60	54	25	28
VP407511	2030	BWI	UNION STATION	30	44	30	41
/IBR892	2030	FREDERICK	UNION	60	111	56	30
ACAM845	2030	DORSEY	WASHINGTON-UNION	60	50	25	30
/IP404	2030	WASHINGTON-UNION	BWI	60	32	22	41
VIP404 VIP502		UNION STATION	BWI	60	32	30	51
	2030						
VIP409	2030	BWI	UNION STATION	60	34	30	53
MCAMNEW	2030	UNION STATION	DORSEY	60	47	25	32
//BRNEW1	2030	BRUNSWICK STATION	UNION STATION	60	95	50	32
/BRNEW2	2030	UNION STATION	BRUNSWICK STATION	60	94	50	32
/IPENNEW	2030	BWI	UNION STATION	60	36	30	50
/MAS321	2030	WASHINGTON-UNION	BROAD RUN	60	77	36	28
/MASS1I	2030		UNION STATION	30	79	36	27
/FRED1I	2030	SPOTSYLVANIA		30	106	60	34
			WASHINGTON-UNION				
MTK86I	2040	FREDERICKSBURG	UNION STATION VRE	60	81	54	40
VCAM840	2040	UNION STATION	DORSEY	60	47	25	32
MBR876	2040	BRUNSWICK STATION	UNION STATION	60	95	50	32
VBR878	2040	DUFFIELDS WVA	UNION STATION	60	111	62	34
/ICAM847	2040	DORSEY	UNION STATION	60	54	25	28
1P407511	2040	BWI	UNION STATION	30	44	30	41
/BR892	2040	FREDERICK	UNION	60	111	56	30
				60	50	25	30
MCAM845	2040	DORSEY	WASHINGTON-UNION				
MP404	2040	WASHINGTON-UNION	BWI	60	32	22	41
MP502	2040	UNION STATION	BWI	60	35	30	51
MP409	2040	BWI	UNION STATION	60	34	30	53
MCAMNEW	2040	UNION STATION	DORSEY	60	47	25	32
MBRNEW1	2040	BRUNSWICK STATION	UNION STATION	60	95	50	32
MBRNEW2	2040	UNION STATION	BRUNSWICK STATION	60	94	50	32
MPENNEW	2040	BWI	UNION STATION	60	36	30	50
/MAS321	2040	WASHINGTON-UNION	BROAD RUN	60	77	36	28
						20	2-
VMASS1I	2040	BROAD RUN AIRPORT VRE	UNION STATION	20	79	36	27

Note: The AM peak period is from 6:00 to 8:59 AM, with the AM peak hour being considered 7:00 – 7:59 AM, except for transit service in the outer areas of the region where the AM peak hour is considered 6:00-6:59 AM. Year 2045 commuter rail data is the same as 2040.

Ref: "I:\ateam\docum\FY22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\ 2022Update_Visualize2045_Met_Com_BRT_Files.xlsx"

Transit Route Name	Transit Year	Origin	Destination	Hdwy	RT(mins.)	Dis.(mi)	Spd(mph)
AMTK94I	2021	FREDERICKSBURG	UNION STATION	60			
AMTK950	2021	UNION STATION	FREDERICKSBURG	60	70		
AMTK176	2021	MANASSAS	UNION STATION	60	60	33	
MBR871	2021	UNION STATION	BRUNSWICK STATION	60	94	50	
MPEN1I	2021	BWI	UNION STATION	60	40	30	
MPEN10	2021	UNION STATION	BWI	60	35	30	
VFR301	2021	WASHINGTON-UNION	SPOTSYLVANIA	60	107	60	
VMAS336	2021	Broad Run	WASHINGTON-UNION	60	70	36	
VMAS325	2021	UNION STATION	BROAD RUN	60	79	36	
AMTK94I	2023	FREDERICKSBURG	WASHINGTON-UNION	60	80	54	
АМТК950	2023	UNION STATION VRE	FREDERICKSBURG	60	72	54	
AMTK176	2023	MANASSAS	UNION STATION	60	60	33	
MBR871	2023	UNION STATION	BRUNSWICK STATION	60	94	50	
MPEN1I	2023	BWI	UNION STATION	60	40	30	
MPEN10	2023	UNION STATION	BWI	60	35	30	
VFR301	2023	WASHINGTON-UNION	SPOTSYLVANIA	60	109	60	
VMAS336	2023	BROAD RUN	WASHINGTON-UNION	60	70	36	
VMAS325	2023	UNION STATION	BROAD RUN	60	70	36	
AMTK94I	2025	FREDERICKSBURG	WASHINGTON-UNION	60	80	54	
AMTK950	2025	UNION STATION VRE	FREDERICKSBURG	60	72	54	
	2025	MANASSAS		60	60	33	
AMTK176	2025				94		
MBR871		UNION STATION	BRUNSWICK STATION	60	-	50	
MPEN1I	2025		UNION STATION	60	40	30	
MPEN10	2025		BWI	60	35	30	
VFR301	2025	WASHINGTON-UNION	SPOTSYLVANIA	60	109	60	
VMAS336	2025	BROAD RUN	WASHINGTON-UNION	60	70	36	
VMAS325	2025		BROAD RUN	60	79	36	
AMTK94I	2030	FREDERICKSBURG	WASHINGTON-UNION	60	80	54	
AMTK950	2030	UNION STATION VRE	FREDERICKSBURG	60	72	54	
AMTK176	2030	MANASSAS		60	60	33	
MBR871	2030	UNION STATION	BRUNSWICK STATION	60	94	50	
MPEN1I	2030	BWI	UNION STATION	60	40	30	
MPEN10	2030	UNION STATION	BWI	60	35	30	
VFR301	2030	WASHINGTON-UNION	SPOTSYLVANIA	60	109	60	
VMAS336	2030	BROAD RUN	WASHINGTON-UNION	60	70	36	
VMAS325	2030	UNION STATION	BROAD RUN	60	79	36	
AMTK176	2040	MANASSAS	UNION STATION	60	60		
AMTK950	2040	UNION STATION VRE	FREDERICKSBURG	60	72	54	
AMTK94I	2040	FREDERICKSBURG	WASHINGTON-UNION	60	80	54	41
MBR871	2040	UNION STATION	BRUNSWICK STATION	60	94	50	32
MPEN1I	2040	BWI	UNION STATION	60		30	45
MPEN1O	2040	UNION STATION	BWI	60	35	30	51
VFR301	2040	WASHINGTON-UNION	SPOTSYLVANIA	60	109	60	33
VMAS336	2040	BROAD RUN	WASHINGTON-UNION	60	70	36	31
VMAS325	2040	UNION STATION	BROAD RUN	60	79	36	27

Table 3-31 Off-peak-period commuter rail summary by year: 2021, 2023, 2025, 2030 and 2040

Note: Off-peak period headways and runtimes are calculated using the period from 10:00 AM- 2:59 PM. Years 2045 commuter rail data is the same as 2040.

Ref: "I:\ateam\docum\FY22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\ 2022Update_Visualize2045_Met_Com_BRT_Files.xlsx" Source: 2022 Update to Visualize 2045 and FY 2023-2026 TIP

Transit		, , , , , , , _ ,		RT	Dis.	Spd	Transit	Transit				RT	Dis.	Spd
Year	Origin	Destination	Hdwy	(mins.)	(mi)	(mph)	Rt. Name	Year	Origin	Destination	Hdwy	(mins.)	(mi)	(mph)
2021	UNION STATION	OKLAHOMA AVE	15	12	2	10	29BRT1	2040	Burtonsville PNR	Silver Spring Transit Center	15	30	11	22
2021	Braddock Rd Metro	Pentagon City Metro	8	26	4	9	29BRT2	2040	Briggs Chaney PNR	Silver Spring Transit Center	15	30	11	22
2021	Pentagon City Metro	Braddock Rd Metro	9	24	4	10	CCBRTU	2040	COMSAT	SHADY GROVE	15	46	10	13
2021	S Bell St & 18th St	Potomac Ave & Reed Ave	12	8	1	8	CCTBRT	2040	COMSAT	SHADY GROVE	5	42	9	13
2021	Burtonsville PNR	Silver Spring Transit Center	15	30	11	22	DCSTGTWN	2040	Union Station/ H St.	Georgetown	10	25	3	7
2021	Briggs Chaney PNR	Silver Spring Transit Center	15	30	11	22	DCSTHST2	2040	UNION STATION	BENNING RD METRO	10	24	4	10
2021	Potomac Ave & Reed Ave	S Bell St & 18th St	12	11	2	11	PURPLE	2040	Bethesda	New Carrollton Metro	6	59	16	16
2023	UNION STATION	OKLAHOMA AVE	15	12	2	10	MWAYN	2040	Braddock Rd Metro	Army Navy Dr. Transit Station	12	29	5	10
2023	Braddock Rd Metro	Army Navy Dr. Transit Station	12	31	5	10	MWAYN/	2040	Potomac Ave & Reed Ave	Army Navy Dr. Transit Station	12	12	3	15
2023	Army Navy Dr. Transit Station	Braddock Rd Metro	12	29	5	10	MWAYS	2040	Army Navy Dr. Transit Station	Braddock Rd Metro	12	27	5	11
2023	Bethesda	New Carrollton Metro	6	59	16	16	MWAYS/	2040	Army Navy Dr. Transit Station	Potomac Ave & Reed Ave	12	11	3	16
2023	Potomac Ave & Reed Ave	Army Navy Dr. Transit Station	12	14	3	13	US1BRT	2040	HUNTINGTON METRO STATION	WOODBRIDGE VRE	6	38	15	24
2023	Army Navy Dr. Transit Station	Potomac Ave & Reed Ave	12	13	3	14	VIERSBRT1	2040	Wheaton Metro Station	Rockville Metro Station	9	25	6	14
2023	Burtonsville PNR	Silver Spring Transit Center	15	30	11	22	VIERSBRT2	2040	Wheaton Metro Station	Montgomery College	15	29	8	17
2023	Briggs Chaney PNR	Silver Spring Transit Center	15	30	11	22	NBETHBRT	2040	Montgomery Mall Transit Center	White Flint Metro Station	7	17	3	11
2025	UNION STATION	OKLAHOMA AVE	15	12	2	10	RANDBRT	2040	White Flint Metro Station	US 29 & Tech Rd.	7	50	11	13
2025	Briggs Chaney PNR	Silver Spring Transit Center	15	30	11	22	355BRT1C	2040	Clarksburg Outlets	Montgomery College -	10	60	18	18
2025	Bethesda	New Carrollton Metro	6	59	16	16	355BRT1G	2040	Germantown Transit Center	Montgomery College -	10	60	10	10
2025	Braddock Rd Metro	Army Navy Dr. Transit Station	12	30	5	10	355BRT2	2040	Lakeforest Transit Center	Grosvenor Metro Station	10	24	12	30
2025	Army Navy Dr. Transit Station	Braddock Rd Metro	12	28	5	11	355BRT3	2040	Montgomery College - Rockville	Bethesda Metro Station	10	32	9	17
2025	Potomac Ave & Reed Ave	Army Navy Dr. Transit Station	12	13	3	14	29BRT1	2045	Burtonsville PNR	Silver Spring Transit Center	15	30	11	22
2025	Army Navy Dr. Transit Station	Potomac Ave & Reed Ave	12	12	1	5	29BRT2	2045	Briggs Chaney PNR	Silver Spring Transit Center	15	30	11	22
2025	Burtonsville PNR	Silver Spring Transit Center	15	30	11	22	CCBRTU	2045	COMSAT	SHADY GROVE	15	46	10	13
2025	Wheaton Metro Station	Rockville Metro Station	9	25	6	14	CCTBRT	2045	COMSAT	SHADY GROVE	5	42	9	13
2025	Wheaton Metro Station	Montgomery College	15	29	8	17	DCSTGTWN	2045	Union Station/ H St.	Georgetown	10	25	3	7
2030	Burtonsville PNR	Silver Spring Transit Center	15	30	11	22	DCSTHST2	2045	UNION STATION	BENNING RD METRO	10	24	4	10
2030	Briggs Chaney PNR	Silver Spring Transit Center	15	30	11	22	PURPLE	2045	Bethesda	New Carrollton Metro	6	59	16	16
2030	UNION STATION	BENNING RD METRO	10	24	4	10	MWAYN	2045	Braddock Rd Metro	Army Navy Dr. Transit Station	12	29	5	10
2030	Braddock Rd Metro	Army Navy Dr. Transit Station	12	29	5	10	MWAYN/	2045	Potomac Ave & Reed Ave	Crystal City Metro	12	12	3	15
2030	Potomac Ave & Reed Ave	Crystal City Metro	12	12	2	10	MWAYS	2045	Army Navy Dr. Transit Station	Braddock Rd Metro	12	27	5	11
2030	Army Navy Dr. Transit Station	Braddock Rd Metro	12	27	5	11	MWAYS/	2045	Army Navy Dr. Transit Station	Potomac Ave & Reed Ave	12	11	3	16
2030	Army Navy Dr. Transit Station	Potomac Ave & Reed Ave	12	11	3	16	NBETHBRT	2045	Montgomery Mall Transit Center	White Flint Metro Station	7	17	3	11
2030	Bethesda	New Carrollton Metro	6	59	16	16	RANDBRT	2045	White Flint Metro Station	US 29 & Tech Rd.	7	50	11	13
2030	HUNTINGTON METRO STATION	WOODBRIDGE VRE	6	38	15	24	US1BRT	2045	HUNTINGTON METRO STATION	WOODBRIDGE VRE	6	38	15	24
2030	Wheaton Metro Station	Rockville Metro Station	9	25	6	14	VIERSBRT1	2045	Wheaton Metro Station	Rockville Metro Station	9	25	6	14
2030	Clarksburg Outlets	Montgomery College - Rockville	10	60	18	18	VIERSBRT2	2045	Wheaton Metro Station	Montgomery College	15	29	8	17
2030	Germantown Transit Center	Montgomery College - Rockville	10	60	10	10	355BRT1C	2045	Clarksburg Outlets	Montgomery College -	10	60	18	18
2030	Lakeforest Transit Center	Grosvenor Metro Station	10	24	12	30	355BRT1G	2045	Germantown Transit Center	Montgomery College -	10	60	10	10
2030	Montgomery College - Rockville	Bethesda Metro Station	10	32	9	17	355BRT2	2045	Lakeforest Transit Center	Grosvenor Metro Station	10	24	12	30
2030	Montgomery Mall Transit Center	White Flint Metro Station	7	17	3	11	355BRT3	2045	Montgomery College - Rockville	Bethesda Metro Station	10	32	9	17
2030		Montgomery College	15	29	8	17	NHBRT	2045	Colesville PNR	Takoma Park Metro Station	7	26	10	23

Table 3-32 AM peak-period light rail, BRT, streetcar summary by year: 2021, 2023, 2025, 2030, 2040 and 2045

Note: AM peak period is represented by the service occurring from 7:00 -7:59 AM with the exception of transit service from the outer areas of the region where AM peak reflects 6:00-6:59 AM.

Ref: "I:\ateam\docum\FY22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\ 2022Update_Visualize2045_Met_Com_BRT_Files.xlsx" Source: 2022 Update to Visualize 2045 and FY 2023-2026 TIP

Transit	Transit				RT	Dis.	Spd		Transit	Transit				RT	Dis.	Spd
Rt. Name	Year	Origin	Destination	Hdwy	(mins.)	(mi)	(mph)		Rt. Name	Year	Origin	Destination	Hdwy	(mins.)	(mi)	(mph)
DCSTHST1	2021	UNION STATION	OKLAHOMA AVE	30	12	2	10		29BRT2	2040	Briggs Chaney PNR	Silver Spring Transit Center	15	24	11	28
MWAYN	2021	Braddock Rd Metro	Pentagon City Metro	12	22	4	11		CCBRTU	2040	COMSAT	SHADY GROVE	30	46	10	13
29BRT2	2021	Briggs Chaney PNR	Silver Spring Transit Center	15	24	11	28		CCTBRT	2040	METRO GROVE	SHADY GROVE	10	42	9	13
MWAYS	2021	Pentagon City Metro	Braddock Rd Metro	12	24	4	10		PURPLE	2040	Bethesda	New Carrollton Metro	12	59	16	16
DCSTHST1	2023	UNION STATION	OKLAHOMA AVE	30	12	2	10		DCSTGTWN	2040	Union Station/ H St.	Georgetown	10	25	3	7
MWAYN	2023	Braddock Rd Metro	Army Navy Dr. Transit Station	12	27	5	11		DCSTHST2	2040	UNION STATION	BENNING ROAD METRO	10	24	4	10
MWAYS	2023	Army Navy Dr. Transit Station	Braddock Rd Metro	12	29	5	10		MWAYN	2040	Braddock Rd Metro	Army Navy Dr. Transit Station	12	25	5	12
PURPLE	2023	Bethesda	New Carrollton Metro	12	59	16	16		MWAYS	2040	Army Navy Dr. Transit Station	Braddock Rd Metro	12	27	5	11
29BRT2	2023	Briggs Chaney PNR	Silver Spring Transit Center	15	24	11	28		US1BRT	2040	HUNTINGTON METRO STATION	WOODBRIDGE VRE	12	38	15	24
29BRT2	2025	Briggs Chaney PNR	Silver Spring Transit Center	15	24	11	28		VIERSBRT1	2040	Wheaton Metro Station	Rockville Metro Station	18	20	6	18
DCSTHST1	2025	UNION STATION	OKLAHOMA AVE	30	12	2	10		VIERSBRT2	2040	Wheaton Metro Station	Montgomery College	30	24	8	20
PURPLE	2025	Bethesda	New Carrollton Metro	12	59	16	16		355BRT1C	2040	Clarksburg Outlets	Montgomery College - Rockville	15	60	18	18
MWAYN	2025	Braddock Rd Metro	Army Navy Dr. Transit Station	12	26	5	12		355BRT1G	2040	Germantown Transit Center	Montgomery College - Rockville	15	60	10	10
MWAYS	2025	Army Navy Dr. Transit Station	Braddock Rd Metro	12	28	5	11		355BRT2	2040	Lakeforest Transit Center	Grosvenor Metro Station	15	24	12	30
VIERSBRT1	2025	Wheaton Metro Station	Rockville Metro Station	18	20	6	18		355BRT3	2040	Montgomery College - Rockville	Bethesda Meto Station	15	32	9	17
VIERSBRT2	2025	Wheaton Metro Station	Montgomery College	30	24	8	20		NBETHBRT	2040	Montgomery Mall Transit Center	White Flint Metro Station	15	17	3	11
29BRT2	2030	Briggs Chaney PNR	Silver Spring Transit Center	15	24	11	28		RANDBRT	2040	White Flint Metro Station	US 29 & Tech Rd.	15	50	11	13
US1BRT	2030	HUNTINGTON METRO STATION	WOODBRIDGE VRE	12	38	15	24		29BRT2	2045	Briggs Chaney PNR	Silver Spring Transit Center	15	24	11	28
DCSTHST2	2030	UNION STATION	BENNING ROAD METRO	10	24	4	10	,	CCBRTU	2045	COMSAT	SHADY GROVE	30	46	10	13
PURPLE	2030	Bethesda	New Carrollton Metro	12	59	16	16		CCTBRT	2045	METRO GROVE	SHADY GROVE	10	42	9	13
MWAYN	2030	Braddock Rd Metro	Army Navy Dr. Transit Station	12	25	5	12		PURPLE	2045	Bethesda	New Carrollton Metro	12	59	16	16
MWAYS	2030	Army Navy Dr. Transit Station	Braddock Rd Metro	12	27	5	11		DCSTGTWN	2045	Union Station/ H St.	Georgetown	10	25	3	7
NBETHBRT	2030	Montgomery Mall Transit Center	White Flint Metro Station	15	17	3	11		DCSTHST2	2045	UNION STATION	BENNING ROAD METRO	10	24	4	10
355BRT1C	2030	Clarksburg Outlets	Montgomery College - Rockville	15	60	18	18		MWAYN	2045	Braddock Rd Metro	Army Navy Dr. Transit Station	12	25	5	12
355BRT1G	2030	Germantown Transit Center	Montgomery College - Rockville	15	60	10	10		MWAYS	2045	Crystal City Metro	Braddock Rd Metro	12	27	5	11
355BRT2	2030	Lakeforest Transit Center	Grosvenor Metro Station	15	24	12	30		NBETHBRT	2045	Montgomery Mall Transit Center	White Flint Metro Station	15	17	3	11
355BRT3	2030	Montgomery College - Rockville	Bethesda Meto Station	15	32	9	17		RANDBRT	2045	White Flint Metro Station	US 29 & Tech Rd.	15	50	11	13
VIERSBRT1	2030	Wheaton Metro Station	Rockville Metro Station	18	20	6	18		US1BRT	2045	HUNTINGTON METRO STATION	WOODBRIDGE VRE	12	38	15	24
VIERSBRT2	2030	Wheaton Metro Station	Montgomery College	30	24	8	20	/	VIERSBRT1	2045	Wheaton Metro Station	Rockville Metro Station	18	20	6	18
									VIERSBRT2	2045	Wheaton Metro Station	Montgomery College	30	24	8	20
									355BRT1C	2045	Clarksburg Outlets	Montgomery College - Rockville	15	60	18	18
									355BRT1G	2045	Germantown Transit Center	Montgomery College - Rockville	15	60	10	10
									355BRT2	2045	Lakeforest Transit Center	Grosvenor Metro Station	15	24	12	30
									355BRT3	2045	Montgomery College - Rockville	Bethesda Meto Station	15	32	9	17
									NHBRT	2045	Colesville PNR	Takoma Park Metro Station	15	26	10	23

Table 3-33 Off-peak-period light rail, BRT, streetcar summary by year: 2021, 2023, 2025, 2030, 2040, and 2045

Note: Off-peak period is from 10:00 AM- 2:59 PM.

Ref: "I:\ateam\docum\FY22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\ 2022Update_Visualize2045_Met_Com_BRT_Files.xlsx" Source: 2022 Update to Visualize 2045 and FY 2023-2026 TIP

Table 3-34 shows the rail and road centerline miles for the years 2019, 2021, 2025, 2030, 2040, and 2045.

Table 3-34 Rail centerline and road lane miles

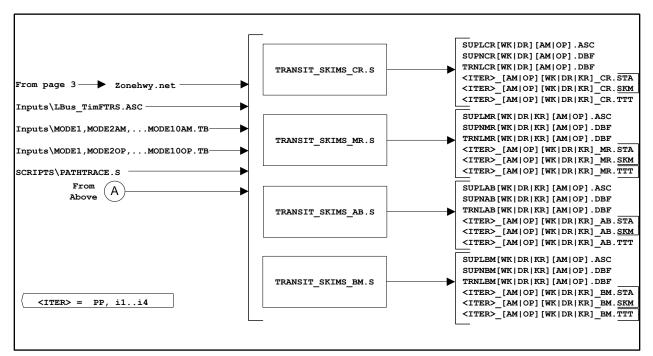
RAIL AND ROAD MILES

(Modeled Area)

	LOV	HOV/HOT	METRORAIL	COMMUTER	BRT **	STREETCAR,
				RAIL *		LIGHT RAIL ***
	LANE MILES	LANE MILES	MILES	MILES	MILES	MILES
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
2021	23,185	224	117	228	21	2
2023	23,281	308	129	228	22	18
2025	23,444	371	129	228	28	18
2030	23,685	460	129	228	69	20
2040	24,100	516	129	228	94	23
2045	24,293	516	129	228	103	23

*VRE and MARC

**Metroway, US29, Viers Mill Rd., North Bethesda, MD 355, US1 (VA), Corridor Cities Transitway, Randolph Rd., New Hampshire Ave.


***H St., H St./Benning Rd. Ext., Purple Line, Union Station-Georgetown (K St.)

NOTE: If a lane operates as HOV/HOT during any part of the day it is counted in the HOV/HOT column. Rail miles are centerline miles and road miles are directional miles, since LOV and HOV facilities are coded directionally.

3.4 Transit path building

The transit path building and path skimming process involves the development of 22 sets of level-ofservice (LOS) skims (matrices) corresponding to two time-of-day period (peak and off-peak), by four transit sub-modes (bus only, Metrorail only, bus-Metrorail combination, and commuter rail), by three access modes (walk, PNR, KNR). For the calculation of average headways and run times, the peak period is represented by the AM peak hour, and the off-peak period is represented by the six-hour midday period. Although one might expect 24 sets of skims (2 x 3 x 4), there are only 22 since KNR access to commuter rail mode is not considered by the mode choice model, and so the total number of required path sets equals 22. This process is shown schematically in Figure 3-24 and is covered in more detail in Chapter 21 of the most recent Gen2/Version 2.4 Travel Model User's Guide.

3.5 Transit Fare Files

3.5.1 Gathering fare data from the transit providers

WMATA is the dominant transit operator in the Washington, D.C. area, operating both the Metrorail and Metrobus systems. WMATA was created in 1967 as an interstate compact agency. The formal name for its area of coverage is the "Washington Metropolitan Area Transit Zone" (WMATZ), but it is more commonly referred to as the WMATA Compact area. As of 2009, the area includes the following jurisdictions:

- District of Columbia
- The following cities in Virginia
 - o Alexandria
 - o Falls Church
 - o Fairfax
- The following counties in Virginia
 - o Arlington
 - Fairfax
 - o Loudoun
- The following counties in Maryland
 - Montgomery
 - Prince George's

The tariff used for this analysis was Tariff #39 that was effective July 1, 2019. However the model also reflects a rail to bus discount that was adopted by WMATA in July 2021 and is referenced in Tariff 40. The Metrorail and Metrobus fares did not change between Tariff #39 and Tariff #40.

In addition to the WMATA tariff, transit fare data is collected for the other transit operators in the modeled area, such as Ride-On, ART, Fairfax Connector, MARC, VRE, and PRTC/Omni. Transit fare data for the 2022 Update to Visualize 2045 LRTP is documented in a memo.²³

3.5.2 Calculating zone-to-zone fares used by the model

The COG transit fare programs are known as MFARE1 and MFARE2. These were originally written as UMODEL programs, known as RPFARE1 and RPFARE2,²⁴ within the UTPS mainframe software system. In the early 1990s, they were then converted to FORTRAN programs called MFARE1 and MFARE2 for the Maryland Department of Transportation, and then, a year later, they were converted to Microsoft FORTRAN 5.0 for use with MINUTP.²⁵ The FORTRAN version was used in the Gen2/Version 2.1D #50 Travel Model, in 2004. In 2007 or 2008, MFARE1 and MFARE2 were converted to TP+ scripts (which is now Cube Voyager), though the conversion was not documented, and the MFARE1 and MFARE2 scripts were first used in the Gen2/Version 2.2 Travel Model in the spring of 2008.

MFARE1 estimates station-to-station Metrorail fares, which are distance based. Per WMATA policy, the distance component of the fare calculation is based on a "composite mile," which is calculated as the average of (a) the distance traveled along the rail system between the passenger's origin and destination stations and (b) the distance traveled in a straight line or "as the crow flies" between the two stations..²⁶ **MFARE2 first calculates non-Metrorail transit fares (commonly referred to as "bus" fares**, even though non-Metrorail transit also includes commuter rail, LRT, and BRT). **Next, MFARE2 outputs the following zone-to-zone matrices**:

- 1. Total transit fares. For paths that include Metrorail, this would include both the Metrorail fare and any other non-Metrorail transit fare that is involved.
- 2. Metrorail-only fares
- 3. "Bus"-only fares (i.e., non-Metrorail-transit-only fares)
- 4. "Bus" access to Metrorail fares (i.e., non-Metrorail-transit access to Metrorail fares)
- 5. "Bus" egress from Metrorail fares (i.e., non-Metrorail-transit egress from Metrorail fares)²⁷

MFARE1 estimates station-to-station Metrorail fares using the composite distance, according to the following procedure, which is based on rules in the WMATA tariff:

• A fixed boarding fare charged for the first few miles.

²³ William Bacon to Files, "2022 Update to Visualize 2045 Bus Fare Matrix Documentation" Memorandum, May 13, 2022.

²⁴ "RP" stands for the name of the original developer: Richard Pratt.

²⁵ William G. Allen Jr., "User's Guide for the MWCOG Fare Programs, Microcomputer Version," Final

⁽Metropolitan Washington Council of Governments, June 1992), 2.

²⁶ Washington Metropolitan Area Transit Authority, "Tariff of The Washington Metropolitan Area Transit Authority Tariff on METRO FARES, Tariff Number 39, Effective July 1, 2019, page 3".

²⁷ Allen, "User's Guide for the MWCOG Fare Programs, Microcomputer Version," 2.

- A secondary fare charged for the next few miles.
- A "tertiary" fare per mile charged for the remaining miles of the trips.
- The sum of above three fare elements should be less or equal to a maximum fare.
- Calculate discounted fare which applies to certain stations.
- Output final fares to a station-to-station matrix.²⁸

One of the key inputs to the MFARE1 process is the section of the WMATA Tariff dealing with Metrorail fares (see, for example, Table 3-35). From this table, we can see that there is a peak and an off-peak fare and there is a maximum peak and off-peak fare (\$6.00 and \$3.85) exclusive of surcharge and differentials. The WMATA fare tariff data is input to the model using the file tariff.txt (see Figure 3-25)

Table 3-35 Metrorail fare structure, WMATA Tariff #39

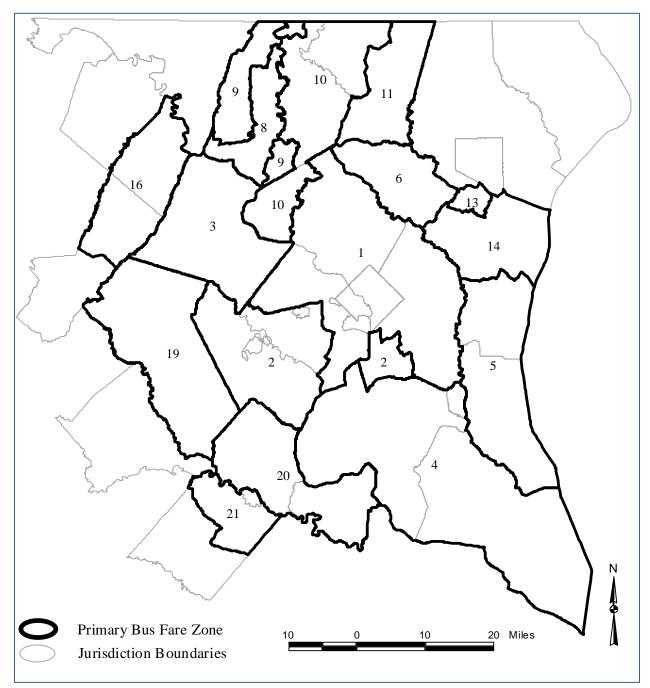
Metrorail Fare Structure	Regu	lar Fares	All Senior & Disabled
(Effective July 1, 2017)	Peak	Off-Peak	Fares are 1/2 Peak Fare
First 3 composite miles	\$2.25	\$2.00	
Each additional composite mile more than			
3 and less than or equal to 6	\$0.326	\$0.244	\$1.10 - \$3.00
Each additional composite mile greater			
than 6	\$0.288	\$0.216	
Maximum peak fare			
(Exclusive of Surcharge and Differentials)	\$6.00	\$3.85	\$3.00

Source: WMATA. "Tariff of The Washington Metropolitan Area Transit Authority Tariff on METRO FARES, Tariff Number 39, Effective July 1, 2019, page 4"

"I:\ateam\docum\FY22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables Tariff-39-on-Rates-Fares-Annotated-Final-6-28-19.pdf

Figure 3-25 Metrorail fares (peak and off-peak) and the rail-to-bus discounts (Tariff.txt)

·····
" <i>"</i> /
;; WMATA Tariff 39 effective July 1, 2019 fare structure input to MFARE2.S
;; plus \$2.00 rail-to-bus discount added by WMATA June 2021 (reflected as 400.0 in file)
;; iii
;; ;;
;; (Prepared September 1, 2021/jp)
;; file tariff.txt
;;;
;; Peak and OffPeak Metrorail Policy
;
; Fare Increment Fare Rate in Cents Trip Distance Increment (in Composite Miles)
; in Cents per Composite mile: Associated with Fare Increment/Rate


²⁸ Allen, 3.

Pk Fare Incr1 = 225.0 Pk Fare Rate1 = 0.0 Pk Fare Dist1 = 3.0 ; Op Fare Incr1 = 200.0 Op Fare Rate1 = 0.0 Op Fare Dist1 = 3.0 ; Pk Fare Incr2 = 0.0 Pk Fare Rate2 = 33.0 Pk Fare Dist2 = 3.0 ; Op_Fare_Incr2 = 0.0 Op_Fare_Rate2 = 24.0 Op_Fare_Dist2 = 3.0 ; Pk Fare Incr3 = 0.0 Pk Fare Rate3 = 29.0 Op_Fare_Incr3 = 0.0 Op_Fare_Rate3 = 22.0 ; Pk Fare Max = 600.0; $OP_Fare_Max = 385.0$; ;;-----;; Rail-to-Bus discounts in current year cents based on selected tariff ;; :: ;; DC_RailBus_Disc = 400.0; Area defined by Jur='0' in the zone file input ;; Discount available to SmartTrip card holders only MD RailBus Disc = 400.0; Area defined by Jur='1' in the zone file input ;; \$2.00 each way rail to bus discount VA1_RailBusDisc = 400.0 ; Area defined by Jur='2' in the zone file input ;; added by WMATA June 2021. 400.0 will VA2 RailBusDisc = 400.0; Area defined by Jur='3' in the zone file input ;; be divided in MFARE2 program to 200 each way

MFARE2 calculates "bus" (non-Metrorail transit) fares using a set of "bus" fare zones. The current program allows for up to 21 bus fare zones in the modeled area. Each TAZ must be associated with either one or two bus fare zones. This is done in the TAZ fare zone file (TAZFRZN.ASC), which is discussed later. The geography of the bus fare zones can be changed from year to year, to reflect areas that have similar transit fares, such as the area around a commuter rail line. Maps of the current bus fare zones can be seen in Figure 3-26 and Figure 3-28. The first figure shows the primary bus fare zones. The second shows the secondary bus fare zones. And the third figure shows the combined effect of overlaying the two bus fare zone systems. Bus fare zone 1 (Figure 3-26) corresponds roughly to the original WMATA Compact area, before Loudoun County was added. In some cases, the bus fare zones are in two discontiguous pieces, such as bus fare zone 2 (Figure 3-26). In some cases, the bus fare zone may be made up of three discontiguous pieces, such as bus fare zone 9, which has two sections in Figure 3-26 and one section in Figure 3-27. In Figure 3-28, we can see the combined effect: there are some parts of Frederick Co. where the TAZs are associated with only one bus fare zone (such as 8, 9 or, 10), but there are some parts of Frederick Co. where the TAZs are associated with two bus fare zones (such as 8 and 9, or 9 and 10). At any rate, no TAZ can be associated with more than two bus fare zones. Names for the 21 bus fare zones can be found in Table 3-37.

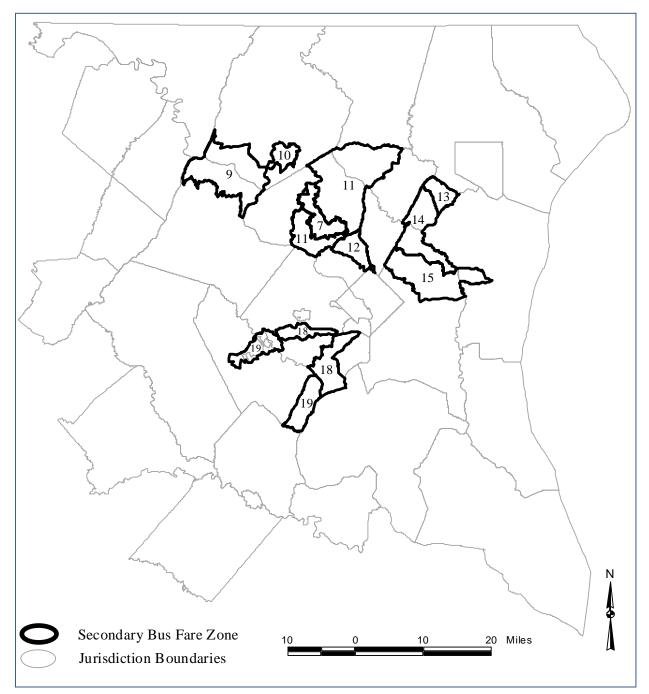
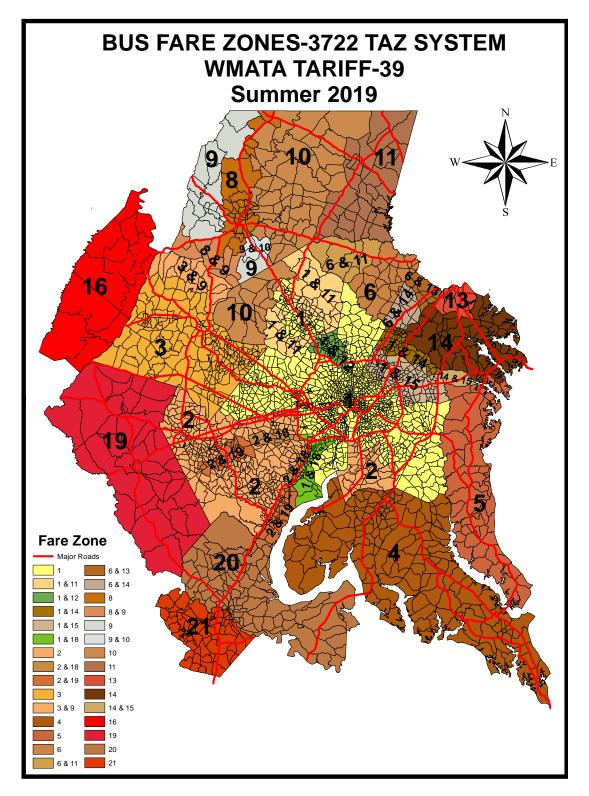



Figure 3-28 Combine bus fare zones (primary overlaid with secondary)

I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\3722 TAZ FARE MAP 2019 A.emf

When a TAZ is identified as being in more than one bus fare zone, the fare is calculated using the average fare for both zones. Additionally, each Metrorail station must be associated with a bus fare zone. These associations between bus fare zones and TAZs, and between bus fare zones and Metrorail stations, are stored in the TAZ bus fare zone file (TAZFRZN.ASC), whose file format can be seen in Table 3-36.

Columns	Format	Field Description
Zonal data (All l	ines in the f	ile)
1-8	14	TAZ Number (1-3,675) and Metrorail Station No. (1-150)
9-16	14	1 st Bus fare zone 1 (currently numbered 1 to 21)
17-24	14	2 nd Bus fare zone 2 (currently numbered 1 to 21)
Metrorail statio	n data (first	150 lines of the file only)
41-48	14	1 st Bus Fare Zone (currently numbered 1 to 21)
49-56	14	2 nd Bus Fare Zone (currently numbered 1 to 21)
57-64	18	Jurisdiction code
65-72	18	P discount
73-80	18	A discount

Table 3-36 File format:	File relating bus fare zones to	TAZs and Metrorail stations	(TAZFRZN.ASC)

The "bus" fare matrix is a 21-by-21 matrix that represents the average non-Metrorail-transit fares from one "bus" fare zone to another. In theory, there can be a separate bus fare zone for peak and off-peak travel. In practice, COG/TPB staff has adopted the practice of using only one bus fare matrix, since there is typically little time-of-day variation in the non-Metrorail transit fares. The current bus fare matrix is shown in Table 3-37. This table also provides names for the bus fare zones and changes since the 2020 Amendment to Visualize 2045 are shaded.

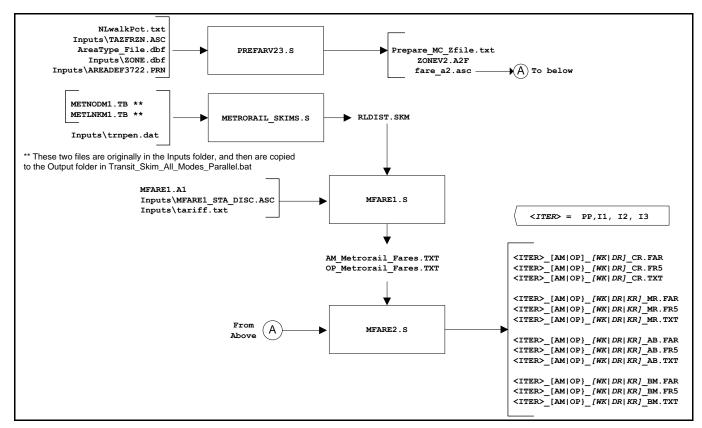

	WMATA TARRIFF #39																				
	BUS FARE MATRIX -2021																				
	WMATA Regular Service	WMATA Express Ser. & Internal Metrobus Special Fare Service	Loudoun Comm. Bus	Charles & St. Mary's Comm. Bus (MTA)	Calvert and Southern AA Comm Bus (MTA)	Howard Comm. Bus (MTA)	Not Used Corridor Cities Transitwa y (Mont. Co)	Frederick Internal Bus	MARC Rail Brunswick (Frederick)	MARC Rail Brunswic k (Mont. R8)	MARC Rail Brunswic k (Mid. Mont)	MARC Rail Brunswic k (Inner)	MARC Rail Penn/ Camden (Outer)	MARC Rail Penn/ Camden (Mid)	MARC Rail Penn/ Camden (Inner)	MARC Rail Brunswic k (W.VA and Clark auto Connect)	VRE Zones 1 & 2 (Inside Beltway)	VRE Zones 3 & 4 (FFX and PW)	VRE Zones 5 & 6 (PW & FAUQ Auto Connect)	Zones 7 & 8 (Staff. & KG Auto	
Fare Zone	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	200	558	1000	412	386	348	560	544	583	491	430	368	491	430	368	798	424	515	607	696	765
2	558	178	1558	970	944	906	1118	1102	1141	1049	988	926	1049	988	926	1356	739	250	155	466	533
3	1000	1558	100	1412	1386	1348	1560	1544	1583	1430	1491	1368	1491	1430	1368	1798	1424	1515	1607	1696	1765
4	412	970	1412	150	798	760	972	956	995	903	842	780	903	842	780	1210	836	927	1019	1108	1177
5	386	944	1386	798	425	734	946	930	969	877	816	754	877	816	754	1184	810	901	993	1082	1151
6	348	906	1348	760	734	348	908	892	931	839	778	716	839	778	716	1146	772	863	955	1044	1113
7	560	1118	1560	972	946	908	130	747	633	516	130	439	1051	990	928	1417	984	1075	1167	1256	1325
8	544	1102	1544	956	930	892	747	114	114	617	617	617	1035	974	912	746	968	1059	1151	1240	1309
9	583	1141	1583	995	969	931	633	114	600	503	503	503	1074	1013	951	632	1007	1098	1190	1279	1348
10	491	1049	1430	903	877	839	516	617	503	386	386	386	982	921	859	386	915	1006	1098	1187	1256
11	430	988	1491	842	816	778	130	617	503	386	309	309	921	860	798	857	854	945	1037	1126	1195
12	368	926	1368	780	754	716	439	617	503	386	309	368	859	798	736	798	792	883	975	1064	1133
13	491	1049	1491	903	877	839	1051	1035	1074	982	921	859	386	386	386	1289	915	1006	1098	1187	1256
14 15	430 368	988 926	1430 1368	842 780	816 754	778	990 928	974 912	1013 951	921 859	860 798	798	386 386	309 309	309 232	1228	854 792	945 883	1037 975	1126	1195
15	798	1356	1798	1210	1184	1146	1417	746	632	386	857	730	1289	1228	1166	800	1222	1313	1405	1494	1563
17	424	739	1424	836	810	772	984	968	1007	915	854	790	915	854	792	1222	424	492	584	674	742
18	515	250	1515	927	901	863	1075	1059	1098	1006	945	883	1006	945	883	1313	492	250	311	401	469
19	607	155	1607	1019	993	955	1167	1151	1190	1098	1037	975	1098	1037	975	1405	584	311	243	311	378
20	696	466	1696	1108	1082	1044	1256	1240	1279	1187	1126	1064	1187	1126	1064	1494	674	401	311	250	288
				1																	1

 Table 3-37 AM Peak and Off-Peak Bus Fare Matrix between MWCOG Fare Zones (Expressed in 2021 cents)

Fare has increased from the previous year

Source: WMATA Tariff #39, effective July 1, 2019.

In addition to MFARE1 and MFARE2, there are two other Cube Voyager scripts that are used in fare development: Prefarv23.s, Metrorail_Skims.s. The entire automated fare development process, consisting of all four programs is shown in Figure 3-29.

Figure 3-29 Process for developing zone-to-zone transit fares

 $\label{eq:rescaled} Ref: "l:\ateam\docum\FY20\Verson23Development\travel_model_user_guide\Ver2.3.78_flowchart_v1.vsd"$

Ultimately, 22 fare matrices are developed by sub-mode, time-of-day period, and access type:

- Four sub-modes (Bus Only Metrorail only, Metrorail/ Bus, and Commuter Rail) by;
- Two time-of-day periods (peak and off-peak), by;
- Three access types (Walk, PNR, and KNR).

Since commuter rail access is distinguished by walk and auto access only (i.e., no differentiation between KNR and PNR), 22 matrices are developed (instead of the 24 implied above).

Table 3-38 lists the main transit fare input files. Chapter 17 of the latest travel model user's guide also discusses the fare development process.

Table 3-38 Listing of Transit Fare Input Files

Filename	Description	Туре	Source
tazfrzn.asc	Fare Zone File	Text	Analyst-generated
areadef3722.prn	Input TAZ-Mode choice district equivalence	Text	Analyst-generated
trnpen.dat	Metrorail network turn penalty file	Text	Analyst-generated
metlnkm1.tb	Metrorail links	Text	Geodatabase
metnodm1.tb	Metrorail nodes	Text	Geodatabase
mfare1_Sta_Disc.ASC	Metrorail Station fare discount array in cents	Text	Analyst-generated
tariff.txt	WMATA Transit fare (tariff) policy Metrorail station XYs scaled to 1/100ths of	Text	Analyst-generated
mfare1.a1	miles	Text	Geodatabase
BUSFARAM.ASC	AM bus fare matrix	Text	Analyst-generated
BUSFAROP.ASC	Off-peak bus fare matrix (same as AM)	Text	Analyst-generated

Ref: "i:\ateam\docum\fy14\2013LRTP_Network_Report\v23_inputs_v10.xlsx"

4 COG/TPB Multi-Year, Multi-Modal Unified Geodatabase

The network inputs to the TPB travel model are maintained and managed in a multi-year, multi-modal spatial database, implemented as an ArcGIS geodatabase (GDB). While MWCOG is transitioning to an activity-based regional travel model (Gen3 Model) which adopts Cube Public Transport (PT) for transit modeling, COG/TPB staff will continue to support the Gen2 Model, which uses Cube TRNBUILD for transit modeling. In support of the network development activities associated with both Gen2 and Gen3 travel models, COG staff have developed the Unified network Geodatabase (UGDB), which combines TRNBUILD and PT networks in one database, and have been using it since 2021. The Unified Geo-Database (UGDB) interacts with a customized network editing program, known as COGTools, that runs within ArcGIS (currently Version 10.4). The COGTools application is developed to help with network editing tasks such as processing network data, exporting highway and transit network files in Cube Voyager or personal geodatabase formats, and generating dynamic layers (e.g., base network layer, travel direction layer and transit layer).²⁹ COGTools has also been updated recently to work with the UGDB.

This chapter starts with some background information on the geodatabase (GDB) and recent changes made to the geodatabase in terms of its design, structure, and operation. It then introduces the unified geodatabase (UGDB) and explains how it handles the differences between TRNBUILD and PT networks. This chapter also provides an overview of recent enhancements made to COGTools and a description of how TPB staff utilizes digital, machine-readable transit information that is now publicly available to update the regional transit networks every year.

4.1 Unified Geodatabase Overview

The TPB's transportation network unified geodatabase (UGDB) serves as a central repository for highway and transit network data. It is currently prepared in Microsoft Access format as a personal geodatabase and stores network data in a multi-modal (highway and transit) and a multi-year framework. The geodatabase includes spatial/geographic information that allows network elements (e.g., links and nodes) to be viewed and edited in the ArcGIS environment. The UGDB also includes link attribute data that is required by the Gen2 and Gen3 travel models. The use of a structured, time-series network geodatabase (GDB) offers several key advantages:

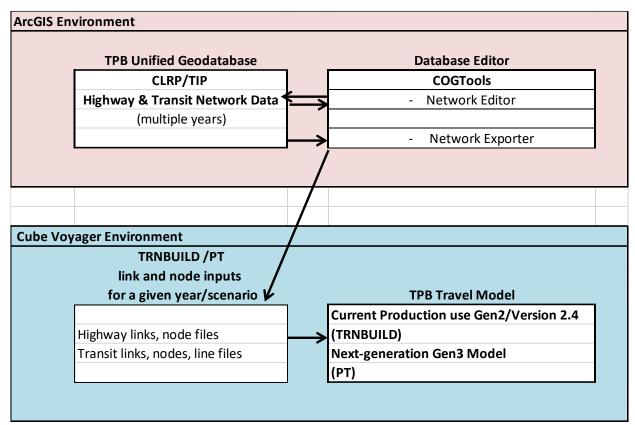
- Consistency in node and link geometry is enforced over time-series networks. Consistency in link attribute coding over time is also enforced.
- Transit network elements are integrated with highway elements in a relational database. Before the GDB existed, transit features were developed as independent text files that referenced the highway node system. The GDB combines transit and highway features so that they may be viewed (or mapped) as a complete system. The use of related tables means that edits to the

²⁹ Jim Yin, "COGTOOLS User Guide, Revision 4.0" (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, May 2, 2022).

highway network result in updates to the associated transit network. This linkage is also available in Cube Base. 30

- Consistency and accuracy of link screenline and jurisdiction codes are enforced over time. Using the GDB, screenlines and jurisdictional boundaries are represented as physical entities. The GDB then uses these physical entities and spatial operations to dynamically assign the appropriate jurisdiction and screenline code to each relevant link, thus reducing the likelihood of manual coding errors.
- The use of a geo-referenced database has greatly facilitated the incorporation of external data from partner agencies into the network development process. Most of the traffic counts, highway inventory data, observed speed data and transit routing information exists in some type of geo-referenced format.
- The recent development of the UGDB enables the user to maintain one unified geo-database and export network files in either TRNBUILD or PT format.

Some of the shortcomings of the current GDB approach include the following:


- The current geo-database does not allow the coding of multiple scenarios for the same network year. This is generally not a problem since the Air Quality Conformity (AQC) and other planning processes at COG usually do not involve multiple alternatives for a specific analysis year. But when they do, the network coding for additional alternatives must be handled outside the network database.³¹
- Edits to the highway network are propagated to the transit network in a limited way.
- Although highway networks can be generated for any year between the base and horizon year, transit networks must be coded for individual years and are typically available only for the milestone years coded in the air quality conformity analyses.

The last two of these shortcomings are discussed in more detail later in the chapter.

TPB staff produces a new version of the multi-year GDB with each update of the LRTP, such that it reflects the project assumptions of the latest LRTP and TIP. The GDB is not developed from "scratch," but rather, is typically developed using the GDB produced from the prior fiscal year (and the prior LRTP) as a starting point. The UGDB that combines TRNBUILD and PT networks has been used since 2021. A macro-scale view of the relationship between the UGDB and the COG/TPB travel model is shown in Figure 4-1. The figure indicates that the UGDB development occurs in the ArcGIS environment.

³⁰ See, for example, p. 590, "Consistency between highway and transit networks", Citilabs, Inc., "Cube Base Reference Guide, Version 6.4.1" (Citilabs, Inc., September 30, 2015).

³¹ Network development staff plan to investigate a work-around solution that could allow the geodatabase to handle multiple network scenarios for the same network year.

Figure 4-1 Relationship Between the network unified geodatabase and the Cube Voyager/PT Modeling Process

Ref: "I:\ateam\docum\FY22\Version2.4_2022Uddate_Visualize2045_Network_Report\Report Tables \chapter4_overview_process.xlsx"

As shown in Figure 4-1, the UGDB is maintained in ArcGIS and is not an integrated component of the current production use travel modeling environment, which makes use of Bentley Systems Cube software and is normally launched from a Windows command prompt. Currently, COG and its consultant are developing a new, activity-based model (ABM), to be known as the Gen3 Travel Model, which makes use of both ActivitySim software and Bentley's PT software for transit modeling. The UGDB interacts with a customized and interactive program editor named COGTools. The program enables highway and transit network elements (nodes, links, and transit routes) in the database to be viewed and edited interactively. The editor is applied as an added "tool bar" within the standard ArcGIS graphical user interface. The COGTools application includes two primary functions: 1) the ability to edit (add, delete, or modify) network elements within the UGDB and 2) the ability to export year-specific network files from the UGDB in Cube TRNBUILD or PT format that can be read directly into the travel model. The COGTools application also enables customized viewing and mapping of the highway and transit features in the UGDB.

4.2 Difference between TRNBUILD and PT networks

To support Gen3 Model development process, COG staff combined both TRNBUILD and PT networks into one unified geo-database. While TRNBUILD and PT networks generally share transit links (modes 1-10) in the UGDB, their non-transit links are coded differently. The difference between the non-transit

links coded for TRNBUILD and PT networks is shown in Table 4-1.³² The "Common" column indicates whether a group of links physically exist in both TRNBUILD and PT networks. Even if links exist in both networks, however, their attributes such as "Mode" and facility type (FType) might be different. If the "Common" column is checked as "N", then the links exist in either TRNBUILD or PT. All "NA" values in the table correspond to a "blank" cell in the database.

Link Name	Node	Range	One	Common	TRNBUILD	РТ	Mode	е Туре	FTy	pe	
LINK Name	Α	В	Way/Two Common Way		TRINDUILD	PI	TRNBUILD	РТ	TRNBUILD	РТ	
TAZ Connector	<=3722	>=15000	2	Y			NA	NA	0	0	
Highway Link/Bus Link	>=15000	>=15000	2	Y			NA	NA	Various	Various	
Dummy Centroid Connector	>=5001 and <=6999	>=20000	2	N	x		4	NA	NA	NA	
PNR Driveway Links	>=20000	>=11000 and <=13999	N/A	N			15 (2-way)	11 (1-way)	0	4	
KNR Drive/Walk Access Links	>=20000	>=8000 and <=10999	2	Y			12	14	0	4	
PNR Lot-to- Station/Bus Stop Node	>=13000 and <=13999	>=15000 and <=15999	1	N		х	NA	15	NA	0	
Bus PNR Driveway Link	>=15000 and <=15999	>=20000	2	N		х	NA	17	NA	4	
Pedestriain Tunnel Links	>=8000 and <=8999	>=9000 and <=10999	2	Y			12	13	0	0	
Walk Access	<=3722	>=8000 and <=9999	2	Ν		х	NA	12	NA	0	

Table 4-1 Comparison of Non-Transit Links Between TRNBUILD and PT Networks

The comparison in Table 4-1 indicates the following:

- Centroid connectors and highway links (the first two records in the table above) are found in both networks, and they share the same value for "FType".
- Links between station dummy centroids (5001-6999) and highway nodes (>=20000, third row in table) are unique to TRNBUILD networks.
- Links between highway nodes (>=20000) and PNR nodes (11000-13999) are found in both networks, but they are two-way links in TRNBUILD vs. one-way links in PT.
- KNR drive-access links connecting highway nodes (>=20000) and rail stations (8000-10999) are common in both TRNBUILD and PT networks but have different "Mode" values; So are the pedestrian transfer links, which provide connections between Metrorail (8000-8999) and commuter rail (9000-9999) stations.

³² Jim Yin to Feng Xie. "Difference between TRNBUILD and PT Network," Memorandum, September 1, 2020.

- In a PT network, there are unique links between highway nodes and bus PNR access stops (15000-15999) and between bus PNR lots (13000-13999) and corresponding bus PNR access stops.
- Also, in a PT network, Mode 12 links are defined as walk-access links between a TAZ Centroid (1-3722) and a rail station (8001-9999).³³ The definition of Mode 12 links is different in a TRNBUILD network.

For PT networks, three unique attributes of "Speed", "TRANTIME" and "WKTIME" are included in the exported highway network link file (link.dbf). All other link attributes that are not included in Table 4-1, such as "ATYPE", "AMLANE", "AMLIMIT", etc., have the same values in both TRNBUILD and PT networks.³⁴ As noted earlier, long haul transit links such as Metrorail links, commuter rail links, light rail links and BRT links are the same in both TRNBUILD and PT networks.

4.3 Recent Changes to the Database and/or COGTools

There have been eight major updates made to the geodatabase and/or COGTools since the migration to the UGDB in 2021. The updates are listed in Table 4-2. Some of them are described in more detail later in this report.

#	# Description Type of Update Further Detail and Benefit					
1	EdgeID	Database/ COGTools	EdgeID is a unique number in the network links table. In order to avoid duplicate values for EdgeID, the datatype of EdgeID was changed from integer to double and the value of EdgeID was developed by multiplying the Anode by 1,000,000 and adding the BNode to the product: ('EdgeID'=(1,000,000*Anode)+BNode)			
2	"Static" attributes, are created to hold the different values for TRNBUILD and PT (TMODE, PMODE, TFType, PTFType, etc)	Database/ COGTools	During a network editing session in the UGDB, depending on the selected database format (PT or TRNBUILD), the "static" attributes will be copied to "'dynamic" attributes and displayed in the ArcGIS map window.			
3	Batch Update	COGTools	Batch Update function is useful to update multiple features at once. Updates were made to COGTools to resolve errors occurring in the UGDB when performing batch updates.			

Table 4-2 Updates made to the geodatabase and COGTools

³³ Yin. Memorandum to Xie, Moran, Seifu, et al. "Issues and Questions on the Development of a Year-2007 Transit Network in Cube Public Transport (PT) Format." May 28, 2020.

[&]quot;I:\ateam\docum\FY20\memos\PT_Memo2007_findings_Final.docx"

³⁴ In the exported transit line files, attribute name "FREQ" in TRNBUILD and "HEADWAY" in PT are different, although their values are the same.

#	Description	Type of Update	Further Detail and Benefit
4	"Update Other direction" function	COGTools	A bug fix was made to the COGTools "Update Other direction" function which applies updates made on one direction of a link to the reverse direction as well.
5	Turn off the Automatic Loading of "NavMap" Layer	COGTools	COGTools was modified to turn off a map layer, "Nav_Map", from loading automatically in the ArcGIS map window, because loading this layer slows down the network editing process. If interested, the user may turn on the layer manually. ³⁵
6	Keep multiple selected links in the highway network editor window, after editing a particular link and confirming the edit	COGTools	The COGTools "Edit Master Network" function, pops up the highway "Network Editor window" and enables the editing buttons on the COGTools toolbar. A user may select and load multiple links in the network editing window. However, formerly, after making edits to a particular link and selecting the "confirm" button, all the other selected links would disappear from the network editor window. Consequently, the COGTools "Edit Master Network" function was updated to keep all selected links in the Network Editor window after editing and confirming the update made to the particular link.
7	Permanently Delete a Link from the Database	COGTools	A function was added in COGTools to permanently delete a link from the UGDB. Originally, COGTools could only retire a link, meaning the physical link remained in the GDB, but could be neither seen nor edited. Any retired link can be restored in the network geodatabase at any time. However, a permanently deleted link cannot be restored and thus this function must be performed with caution.
8	Four time-of-day (TOD) period transit services	Database/ COGTools	In support of the ongoing Gen3 Model development, four time of day (TOD) transit networks are developed in the UGDB. The existing trip-based Gen2/Ver.2.4 Model requires transit network inputs in Cube TRNBUILD format for two TOD periods: AM Peak (7:00 AM - 7:59 AM) and Off-peak (10: 00 AM - 2:59 PM). The Gen3 Travel Model requires transit network inputs in Cube PT format for four TOD periods, AM peak (7:00 AM - 7:59 AM), Midday (10 AM-2:59 PM), PM (4:00 PM – 4:59 PM) and Nighttime (7:00 PM – 11:59 PM). Note that, to continue to support the Gen2 Model, which requires network inputs for the "AM" and "OP" periods, the Midday period is labelled as "OP" instead of "MD" in the UGDB. The PT Export function of COGTools was also updated to export PT transit mode files from the network database for all four time periods. It should be noted that when network files are exported in TRNBUILD format

³⁵ NavMap was the term used when the base street network was from NAVTEQ. The NAVTEQ firm is now called HERE, but the NavMap variable name remains in use here.

#	Description	Type of Update	Further Detail and Benefit
			for a Gen2 Model run, they are still exported in two time-of-day periods ("AM" and "OP"). ³⁶

4.4 Unified Geodatabase COGTools

COGTools is used to edit the transportation network used by the regional travel model. COGTools has been updated to manage transportation networks in both the TRNBUILD and PT format in the UGDB. The updated COGTools allows the user to choose to open the geodatabase either in Cube TRNBUILD or Cube Public Transport (PT) format using the "Format" pull down menu on the unified geodatabase login Interface.³⁷ The "Format" attribute in the "Network Links" layer distinguishes between the PT network and the TRNBUILD network. COGTools filters the editable network features based on the choice of "Format". There are three values for "Format" attribute:

- "C" for common links;
- "P" for PT only links; and
- "T" for TRNBUILD only links.

For example, if a PT network is selected to be viewed and edited, all ArcGIS features with "C" and "P" value will be displayed in the ArcGIS map window, but all ArcGIS features with "T" value in the "Format" attribute will be blocked from viewing and editing.

For attributes that may have different values on the common links of PT and TRNBUILD networks, two "static" variables are created for each of these attributes in the UGDB to hold the different values for PT and TRNBUILD, respectively. For example, for the "Mode" attribute of common links, two static attributes, "PMode" and "TMode", are created for PT and TRNBUILD, respectively. During the network editing session, the "PMode" or "TMode" value will be copied to a "dynamic" attribute, "Mode", for displaying and editing in the ArcGIS map window based on the user's selection of format (PT or TRNBUILD) when opening the UGDB. Any changes to this dynamic attribute made in COGTools will be copied back into the static "PMode" or "TMode" attribute in the database as appropriate. When the user needs to export network files, COGTools will select the corresponding "static" attributes based on the format that the user specifies for exported files (either PT format or TRNBUILD format), and write their values to the exported files.

Before the Esri geodatabase/COGTools approach was adopted, TPB staff used a "master" network stored in ArcInfo to manage the highway networks. In 2004, TPB staff developed a process to perform batch updates on link attributes such as facility type and number of lanes. This process was known as

³⁶ Jim Yin to Feng Xie "Development of Transit Networks for four Time of Day (TOD) Periods in the MWCOG Unified Network Database," Memorandum, April 7, 2022.

³⁷ Page 38, Jim Yin, "COGTOOLS User Guide, Revision 4.0" (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, May 2, 2022).

"TIPUP," i.e., TIP update process. It automatically read the PROJECTID, LANES, FACILITY TYPE, and YEAR values listed in the air quality conformity project inputs table and updated those variables in the highway network database, thus saving a significant amount of staff time when updating networks for a new air quality conformity analysis cycle. In 2009, this process was revised and re-named as "PrepTIP," i.e., prepare TIP batch update program.³⁸ After transitioning to the UGDB, the COGTools batch update function was modified to update multiple features at the same time.

Following the batch update, manual edits are typically made to fine-tune network updates using the COGTools toolbar. Highway editing functions include the ability to:

- Add new facilities in two alternative ways:
 - Copy the link from a HERE street centerline file and add it to the geodatabase³⁹, or
 - Manually draw the link on the screen via a mouse or other pointing devices
- Split highway links (by inserting a node on an existing highway link)
- Retire highway links
- Edit highway link attributes
- Permanently Delete a Link from the Database

The toolbar also includes the following transit editing capabilities:

- Add a transit route
- Copy a transit route
- Delete a transit route
- Modify an existing transit route alignment (represented as a series of nodes)
- Edit transit route attributes

The COGTools design dynamically implements transit network changes in response to highway edits, albeit in a limited capacity. For example, when a highway network link is split, the affected transit route(s) are dynamically modified to include the added node within the existing route alignment.⁴⁰ If a highway network link is deleted, the affected transit route(s) are not modified, although the user is prompted to manually reconfigure the transit route. Also, only existing transit years in the geodatabase at the time of the highway edit are affected by transit edits. The transit editing tool is designed to identify transit routing errors, including cases where there are discontinuities in the node string and cases where the transit route is coded in a manner that is inconsistent with the highway link directionality.

The current COGTools application treats highway network editing in a multi-year context. When highway and transit network edits are made, they are made specific to one network year (indicated by a

³⁸ Robert Snead, Charlene Howard, and Jane Posey, "Highway Network Database Batch Updates: PrepTIP Program," Memorandum, March 11, 2009.

³⁹ To use this functionality, a HERE data layer must be present in the editing window. In the future, we hope to enhance this function to improve the user experience.

⁴⁰ This capability is also available in the Bentley Systems Cube Base graphical network editor, provided the user has both the highway and transit networks open at the same time.

"year" attribute on each link). Taking the ongoing 2022 update to Visualize 2045 as an example, the highway networks for this Long Range Transportation Plan (LRTP) update were prepared for seven milestone years: 2017,⁴¹ 2021, 2023, 2025, 2030, 2040, and 2045, although the COGTools can generate the highway networks for *any year* between the base year and horizon year, respecting the edits implemented for each milestone year. Highway edits implemented for a given year, say 2025, will be carried forward for all subsequent network years, including both milestone years and intermediate years. Transit networks, unlike highway networks, are developed individually for specific milestone year to the subsequent milestone or intermediate years. However, all the transit years that are developed are stored together in the UGDB.

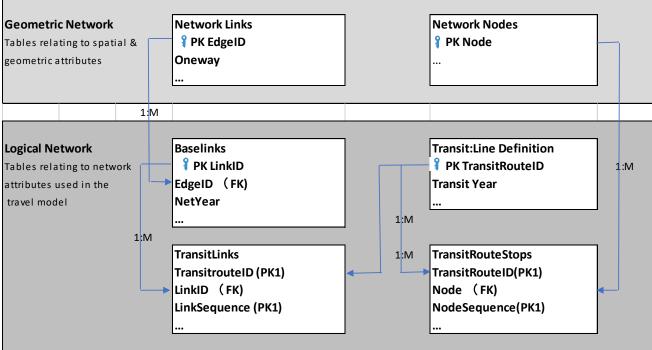
The COGTools toolbar also allows for exporting year-specific files from the UGDB to network input files that are directly used by the travel model. The exporting process is performed separately for highway files and transit files. The highway export may be performed for any year and one of the following two formats may be selected:

1) CUBE-Voyage DBF, Personal Geodatabase or PT Network DBF, or 2) Personal geodatabase (link and node feature classes).

The first format is designed to export network link and node files, in DBF file format, for any year specified by the user (i.e., any milestone or non-milestone year between the base year and the horizon year). The files exported comply with the input file format required by the Gen2/Version 2.4 or Gen3 Travel Model. The second format may be used to export highway network line and point feature classes from the geodatabase and to build a highway network (*.net) in Cube Base, using the GIS tools module in Cube Base ("Build highway network from a feature class / shapefile").

The highway exporting function includes the following features:

- It assigns link distances that reflect HERE/NAVTEQ centerline "true shape" lengths. Link distances are converted from feet to whole miles with an explicit decimal.
- It assigns jurisdiction codes to the highway network links based on the jurisdictional boundary shapes. Jurisdictional boundaries are included as a feature class in the network geodatabase. Highway links are associated with jurisdictions based on the midpoint of the link relative to jurisdictional boundaries.
- It assigns screenline codes to all highway network links that intersect the screenline feature class/layer that is contained in the network geodatabase.


The transit exporting function generates transit link, node and route/line files for a transit year included in the database in either TRNBUILD (*.TB) or PT (*.LIN) format. In the UGDB, the transit files for the Gen2/ Version 2.4 Travel Model are stored in TRNBUILD format by two TOD periods AM (7:00 AM-7:59

⁴¹ 2017 was not an air quality conformity year but is included in the model/network transmittal package.

AM) and OP (10:00 AM- 2:59 PM). For the Gen3 Travel Model, on the other hand, transit network files are stored in PT format by four TOD periods: AM (7:00 AM-7:59 AM), OP (10:00 AM- 2:59 PM), PM (4:00 PM – 4:59 PM), and NT (7:00 PM – 11:59 PM).

4.5 Unified Geodatabase Tables: Overview and Highway Network Tables

A more detailed view of the tables that exist within the UGDB structure is shown in Figure 4-2. The UGDB is a collection of related MS Access tables that are of two general types: geometric network tables and logical network tables.⁴² The geometric network consists of two "feature class" tables: a network links table and a network nodes table. The two tables contain basic attributes of links and nodes in the transportation network, and geographic information that is necessary for displaying network features on a map.

Figure 4-2 TPB Unified Geodatabase Structure

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables\GDB_Structure.xlsx"

In Figure 4-2, "PK" means "primary key" and "FK" means "foreign key," as described below. The geodatabase is a relational database, which means that it is a database composed of tables ("relations"). Tables can be related to each other, in which case, there is a minimum and maximum number of elements allowed on each side of the relationship, known as the minimum and maximum cardinality. In general, the maximum cardinality values can be 1:1 (one-to-one), 1:M (one-to-many), M:1 (many-to-

⁴² See, for example, Esri, "Essential Geometric Networks Vocabulary," ArcMap Documentation, 2021, https://desktop.arcgis.com/en/arcmap/latest/manage-data/geometric-networks/essential-geometric-networksvocabulary.htm; OR Esri, "What Are Geometric Networks?," ArcMap Documentation, 2021, https://desktop.arcgis.com/en/arcmap/latest/manage-data/geometric-networks/what-are-geometric-networks-.htm.

one), and N:M (many-to-many). Minimum cardinalities (not shown in Figure 4-2) are typically zero (optional) or one (mandatory). Additionally, tables are normally set up to contain only unique records (no duplicates). A key value is a variable that uniquely defines a record in a table. Since there can be more than one variable that can serve as a key, each of these variables is called a candidate key. Normally, one of the candidate keys is chosen as the primary key (PK). If a database is stored in a database management system (DBMS), normally the DBMS enforces "entity integrity" (e.g., no duplicate rows allowed) and "referential integrity" (ensure that minimum and maximum cardinalities are obeyed). Although COGTools is essentially a spatial DBMS, it enforces neither entity integrity or referential integrity. Nonetheless, it can still be useful to show which variables are the primary and foreign keys. For example, when two tables have a 1:M relationship, the first table is called the parent and the other table is called the child. In the case of a 1:M relationship, the primary key of the parent table is placed inside the child table as a foreign key. In some cases, a key is composed of two or more variables, in which case the key is called a composite key.

In Figure 4-2, there is a 1:M relationship between the "Network Links" table and the "BaseLinks" table, so the primary key of the "Network Links" table (EdgeID) is placed as a foreign key in the "Baselinks" table. Note that both the "TransitLinks" table and the "TransitRouteStops" table have a composite key (labeled as PK1), which is composed of two variables: TransitRouteID and LinkSequence.

The network links attributes are shown in Table 4-3. Two notes about Table 4-3: First, the attribute RouteName is a placeholder and is currently blank. In the future, it is hoped to populate this attribute with actual link (road segment) names. Second, the information in the table about the oneway flag attribute may seem counter-intuitive: Namely, "1" indicates a two-way link and "2" indicates a one-way link. The network node table attributes are shown in Table 4-4.

In contrast, the logical network is a group of tables that contain travel model-related attributes associated with the links and nodes. The logical network consists of four tables:

- 1. Base Links: Highway and transit network link attributes (see Table 4-5).
- 2. Transit Links: Transit network-related links (see Table 4-6).

Transit Route Stops: Transit route alignments, expressed as a network node sequence (see

- 3. Table 4-7).
- 4. Transit Line Definition: The transit line attributes (see Table 4-8).

The highway network is composed of geometric elements from the network links and network node tables and logical network elements from the Baselinks table. The EdgeID variable in the network links table is a unique number that identifies each physical (geometric) link. It does not vary by direction or network year. As noted earlier, as shown in Figure 4-2, the EdgeID variable is the primary key field that relates the geometric and logical highway networks. The relationship between the geometric network and the logical network is one to many (1:M). That is, each record/link in the geometric network (Network Link feature class table) may correspond to one, or many records/links in the logical network (Base Links table). Entries in the logical network represent link records in different network years.

In the logical network, LinkID is a unique number assigned to identify links by direction and transit year. It is a primary key variable that relates the logical network base links table and transit links table. The relationship between logical links and transit links is also one to many (1:M). That is, each logical network link may correspond to zero, one, or many transit links.

In the transit network, TransitRouteID is a unique number assigned to identify transit route for different transit years in the TransitLineDefinition table. It is the primary key variable that relates the TransitLinks and TransitRouteStops tables. The relationship between TransitLineDefinition and transitLinks/TransitRouteStops is one to many (1:M).

In the geometric network, the Network Nodes feature class mainly provides the geographic location of transportation facilities, such as transit stations, bus stops, park-and-ride lots, intersections, and zone centroids. Node is the unique numerical ID and functions as the primary key that relates the geometric network and the logical network, i.e., the nodes feature class table and the base links table.

Field Name	Data Type	Description	
	Long		
OBJECTID	Integer	Geodatabase record identifier	
Shape	N/A	Geodatabase geometry field	
EdgeID	String	Geometry network link identifier (Pair node sequence)	
		Link type code:	
		1. Highway Link	
		2. Bus Link	
		3. TAZ Connector	
		4. Metrorail Link	
		5. Commuter Rail Link	
		6. Light Rail Link	
		7. Light Rail to Bus	
		8. Metro Station to Bus Stop	
		9. Commuter Station to Bus Stop	
		10. Metro PNR to Station	
LinkType	Long	11. Commuter PNR to Station	
спктуре	Integer	12. Bus PNR to Bus Stop	
		13. Light PNR to Station	
		14. BRT/Street Link	
		15. BRT/Street PNR to Station	
		16. BRT/Street to Bus	
		17. Hwy to Metro PNR	
		18. Hwy to COMM PNR	
		19. Hwy to LRT PNR	
		20. Hwy to Metro KNR	
		21. Hwy to COMM KNR	
		22. Hwy to LRT KNR	
		23. BusPNR-ro-BusSta	
	Long		
ANode	Integer	A Node	
	Long		
BNode	Integer	B Node	
FunctionClass	Long	Link facility type code (0 - 6)	
	Integer	0/centroids, 1/Freeways, 2/Major Art., 3/Minor Art, 4/ Collector, 5/ Expressway, 6/	
		Ramp	
Format	String	"C" - Common Link, "P"- PT Link Only, "T" - TRNBUILD Link Only	
Oneway	Integer	One-way or two-way link code: 1= two-way and 2= one-way	
-		RampFlag is sometimes populated with "P", and represents updates to	
		perpendicular links of the facility being updated for some projects. This is	
RampFlag	Text	used in the PrepTIP process—the links with RampFlag=P have the year	

Table 4-3 Network Links Featur	e Class table with "Link	Type" codes (1-16)	description
Table 4-5 Network Links Featur	e class table with Link	Type coues (1-10)	uescription

Field Name	Data Type	Description
		updated, but not the number of lanes or facility type of the project with
		which they are associated.
	Long	
RouteID	Integer	(Not Used)
RouteName	Text	Facility name (place holder field, not currently populated)
UpdateBy	Text	Person's name updating the geodatabase
	Long	
Screen	Integer	Screenline Code (1-38)
JUR	Integer	Jurisdiction code (0 -23): 0/dc, 1/mtg, 2/pg, 3/alr/, 4/alx,5, ffx, 6/ldn, 7/ pw, 8/(unused), 9/ frd, 10/how, 11/aa, 12/chs, 13/(unused), 14/car, 15/cal, 16/stm, 17/ kg, 18/fbg, 19/stf, 20/spts, 21/fau, 22/clk, 23/jef
Length	Double	Link Length in feet
Shape_Length	Double	ArcGIS auto-generated geometry length "true shape" in feet

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables \gdb_tables_Rev4-4-2022.xlsx"

Table 4-4 Network Nodes Feature Class table with "Node Type" codes (1-13) description

Field Name	Data Type	Description
OBJECTID	Long Integer	Geodatabase record identifier
Shape	N/A	Geodatabase geometry field
Node	Long Integer	Node numbers
		Node type code:
		1= Highway Node
		2= Bus Node
		3= TAZ Centroid
		4= Metrorail Node
	Long Integer	5= Commuter Rail Node
NodeType		6= Light Rail Node
Noderype		7= Light Rail Parking Lot Node
		8= Metro Parking Lot Node
		9= Commuter Parking Lot Node
		10= Bus PNR Node
		11=BRT Street PNR
		12= BRT Street Node
		13= Station Dummy Centroid Node
		Jurisdiction code (0 - 23)
Jur	Text	0/DC, 1/MTG, 2/PG, 3/ALR/, 4/ALX,5, FFX, 6/LDN, 7/ PW, 8/(unused),
		9/ FRD, 10/HOW, 11/AA, 12/CHS, 13/(unused), 14/CAR, 15/CAL, 16/STM, 17/ KG, 18/FBG, 19/STF, 20/SPTS, 21/FAU, 22/CLK, 23/JEF
UpdatedBy	Text	(Not Used)

Highway and Transit Networks used in the Air Quality Conformity Analysis of the 2022 Update to Visualize 2045 and the FY 2023-2026 TIP (Gen2/Ver. 2.4 Travel Model)

Field Name	Data Type	Description
X_COORD	Double	X coordinate of a node (MD State Plane, NAD83, feet)
Y_COORD	Double	Y coordinate of a node (MD State Plane, NAD83, feet)
Name	Text	TransitStop/Station Name
NetYear	Long Integer	The year the network node becomes active in the database

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables \gdb_tables_Rev4-4-2022.xlsx"

Table 4-5 Base Links Table with "Mode" codes (1-16) description

Field Name	Data Type	Description
OBJECTID	Long Integer	Geodatabase record identifier
LinkID	Long Integer	Logical network link Identifier
EdgeID	Long Integer	Geometry network link identifier
ANode	Long Integer	A Node
BNode	Long Integer	B Node
StreetName	Text	Street Segment Name
NDPR2	Text	Combination of Anode and Bnode (Not Used)
BaseYear*	Long Integer	Year 2000 or Year 2001
TravelDirection	Text	(Not Used)
Distance	Double	Link distance in miles (X.XX)
LinkType	Long Integer	Link type code (1-24) (Dynamic)
PLinkType	Long Integer	Link type code (1-24) (PT Network)
TLinkType	Long Integer	Link type code (1-24) (TRNBUILD Network)
		Mode Code (1-16): (Dynamic)
		1= Local Metrobus
		2= Express Metrobus
Mode	Long	3= Metrorail
would	Integer	4= Commuter Rail
		5= Light Rail
		6= Other primary - Local bus
		7= Other primary - Express bus

Highway and Transit Networks used in the Air Quality Conformity Analysis of the 2022 Update to Visualize 2045 and the FY 2023-2026 TIP (Gen2/Ver. 2.4 Travel Model)

Field Name	Data Type	Description
		8= Other secondary - Local bus
		9= Other secondary – Express bus
		10= Bus Rapid Transit or Streetcar
		11= Drive Access link
		12= Bus-to-rail Transfer link
		13= Walking link
		14= (Not Used)
		15= PNR-to-Rail station/Bus stop
		16= Zonal Access or Egress
PMODE	Long Integer	Mode Code (1-16): (PT Network)
TMODE	Long Integer	Mode Code (1-16):(TRNBUILD Network)
TOLL	Integer	Toll value in current year dollars
TollGrp	Long Integer	Toll Group code (1- 9999)
FType	Long Integer	Link facility type code (0 - 6) (Dynamic) 0/Centroids, 1/Freeways, 2/Major Art., 3/Minor Art, 4/ Collector, 5/ Expressway, 6/ Ramp
РҒТуре	Long Integer	Link facility type code (0 - 6) (PT Network)
TFType	Long Integer	Link facility type code (0 - 6) (TRNBUILD Network)
LType	Text	Link type: H=Highway links, T=Transit only links, and Z=TAZ connector
АТуре	Long Integer	Area type code (1 -6)
<period> Lane</period>	Long Integer	<period> number of lanes</period>
<period> Limit</period>	Long Integer	<period> limit code (0 - 9)</period>
Screen	Long Integer	Screenline code
NetYear	Long Integer	The year the network link becomes active in the database
ProjectID	Text	Project identifier
ZoneID	Long Integer	TAZ centroid identifier (1-3,722)
Status	Long Integer	Link status code: 1= Active and 2= Retired
COGStatus	Text	(Not Used)
UpdateDate	Text	The date and time of link attributes update
Jur		Jurisdiction code (0 - 23)

Highway and Transit Networks used in the Air Quality Conformity Analysis of the 2022 Update to Visualize 2045 and the FY 2023-2026 TIP (Gen2/Ver. 2.4 Travel Model)

Field Name	Data Type	Description
	Long Integer	0/DC, 1/MTG, 2/PG, 3/ALR/, 4/ALX,5, FFX, 6/LDN, 7/ PW, 8/(unused), 9/ FRD, 10/HOW, 11/AA, 12/CHS, 13/(unused), 14/CAR, 15/CAL, 16/STM, 17/ KG, 18/FBG, 19/STF, 20/SPTS, 21/FAU, 22/CLK, 23/JEF
Count	Long Integer	(Not Used)
Speed	Double	Dynamic
PSpeed	Double	(PT Network)
TSpeed	Double	(TRNBUILD Network)
Кеу		
<period> =</period>	AM	AM peak period (7:00 AM -7:59 AM)
	PM	PM (4:00 PM – 4:59 PM)
	OP	Off-peak period (10:00 Am - 2:59 PM)
	NT	NT (7:00 PM – 11:59 PM
BaseYear*	2000	Links entered into the database by DCI when first developed
	2001	Links subsequently entered into the database by DTP staff

4.6 Unified Geodatabase Tables: Transit Network Tables

In the logical network, the transit network is represented by the following three tables:

- 1. Transit Links: Maintains the attributes of the transit network links.
- 2. Transit Route Stops: Consists of all transit connection points including bus stops, transit stations, and park-and-ride lots.
- 3. Transit Lines Definition: Contains year-specific transit data for each transit route.

The TransitRouteID variable is a primary key in the "Transit Line Definition" table and a foreign key in the "Transit Links" table and "Transit Route Stops" table. Thus, as shown in Figure 4-2, it links these three tables together. Attributes maintained in the Transit Links, Transit Route Stops, and Transit Lines Definition tables are shown in Table 4-6, Table 4-7, and Table 4-8, respectively.

Field Name	Data Type	Description
ObjectID	Long Integer	Geodatabase record identifier
LinkID	Double	Logical network link identifier
TransitRouteID	Long Integer	Transit Route identifier
ANode	Double	A Node
BNode	Double	B Node
LinkSequence	Double	Sequence number of links that form a transit route
Scenario	Text	Project identifier
TransitYear	Double	Specific year of the transit route
SYear	Double	Year project is open for use
Operation	Double	Operation time code: 1= AM peak (7:00 AM -7:59 AM), 2= off-peak (10 AM-2:59 PM), 3= PM (4:00 PM – 4 :59 PM) and 4= NT (7:00 PM – 11:59 PM)

Table 4-6 Transit Links Table

Ref: "I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report\Report_Tables \gdb_tables_Rev4-4-2022.xlsx"

Table 4-7 Transit Route Stops Table

Field Name	Data Type	Description
ObjectID	Long Integer	Geodatabase record identifier
TransitRouteID	Long Integer	Transit Route identifier
Node	Long Integer	List of nodes used by a transit route
NodeSequence	Long Integer	Sequence number of nodes on a specific transit route
Operation	Long Integer	Transit operation preriod code: 1= AM peak (7:00 AM -7:59 AM), 2= off-peak (10 AM-2:59 PM), 3= PM (4:00 PM – 4 :59 PM) and 4= NT (7:00 PM – 11:59 PM)
StopFlag	Integer	Transit stop or non-stop code: 0= Stop and 1= Non-Stop
SourceYear	Long Integer	Base year from which transit route is derived
SYear	Long Integer	Year project is open for use
Scenario	Text	Project identifier
TransitYear	Long Integer	Specific year of the transit route

Table 4-8 Transit Lines Definition Table

Field Name	Data Type	Description
ObjectID	Long Integer	Geodatabase record identifier
TransitRouteID	Long Integer	Transit Route identifier
TransitRouteName	Text	Transit Route name
OriginNode	Long Integer	Origin-of-transit-route stop node identifier
DestinationNode	Long Integer	End-of-transit-route stop node identifier
OriginNodeName	Text	Origin transit line station name e.g. Shady Grove Station
DestiNodeName	Text	End-of-the line station name e.g. Glenmont Station
Oneway	Long Integer	One-way or two-way route code: 1= two-way and 2= one-way
		Mode Code:
		1= Local Metrobus
		2= Express Metrobus
		3= Metro Rail
		4= Commuter Rail
		5= Light Rail
		6= Other primary - Local bus
		7= Other primary - Express bus
Mode	Long Integer	8= Other secondary - Local bus
		9= Other secondary – Express bus
		10= Bus Rapid Transit or Streetcar
		11= Drive Access link
		12= Bus-to-rail Transfer link
		13= Walking link
		14= (Not Used)
		15= PNR-to-Rail station/Bus stop
		16= Zonal Access or Egress
Headway	Double	Transit vehicle headway (in mins.)
Runtime	Long Integer	Transit route running time (in mins.)
		Transit operation preriod code: 1= AM peak (7:00 AM -7:59
Operation	Long Integer	AM), 2= off-peak (10 AM-2:59 PM), 3= PM (4:00 PM – 4 :59 PM)
		and 4= NT (7:00 PM – 11:59 PM)
SourceYear	Long Integer	Base year from which transit route is derived
Scenario	Text	Project identifier
TransitYear	Long Integer	Specific year of the transit route
SYear	Long Integer	Year project is open for use
RunSpeed	Long Integer	(Not Used)
LineDistance	Long Integer	(Not Used)
Operator	Text	Transit operator / owner name, e.g. WMATA

 $Ref: ``l: a team docum fy 22 Version 2.4_2022 Update_Visualize 2045_Network_Report_Tables \ gdb_tables_Rev4-4-2022.xlsx'' Version 2.4_2022 Update_Visualize 2045_Network_Report_Tables \ gdb_tables_Rev4-4-2022.xlsx'' Version 2.4_2022 Version 2.4_202 Version 2.4_202 Version 2.4_202 Version 2.4_202 Version 2.4_202 Version 2.4_2022 Version 2.4_202 Version$

4.7 General Transit Feed Specification (GTFS) Data

To support development of the Gen3 Model which uses Cube PT and simulates four time of day (TOD) periods in transit modeling, it was necessary for network staff to code four TOD transit services in the current UGDB. In the database, the existing two TOD periods ("AM" and "OP") are kept the same to support the Gen2/Ver. 2.4 Model, which simulates only two TOD periods in transit modeling. Two additional time periods ("PM" and "NT") were processed and added to the UGDB. One of the standard procedures in the network development process for a regular update of the long-range transportation plan is an update of the base-year transit network line files. The base-year transit network is the starting point for developing all future-year transit networks. The update generally involves:

- 1) Ensuring that the transit lines reflect the most up-to-date run times and service frequencies.
- 2) Checking on whether individual transit lines have been added or removed.

The regional travel model require two variables for each transit route: Average run time and average headway, both in minutes. In the past, the update was done using the paper or electronic route schedules published by the transit operators. In the late 1990s, the larger transit operators, such as WMATA and Ride-On, provided some digital, machine-readable schedule data that could be used to calculate average run times and frequencies (headways) for each of the two time-of-day periods (peak and off peak).^{43 44} In 2005, Google and Portland's TriMet transit agency developed an electronic data format for incorporating transit data into online maps. The format was initially known as "Google Transit Feed Specification" (GTFS). Over the next few years, this standard became the default format for sharing public transit scheduling information, and later, the name was changed to "General Transit Feed Specification" (also GTFS). A GTFS feed is a collection of comma-separated (CSV) files that represents a public transit system's schedules and transit route itineraries. Each file contains an aspect of transit service, including stops, routes, trips, and other schedule data. The GTFS specification is defined by the series of files shown in Table 4-9. With the availability of the GTFS scheduling data, COG staff currently extract the scheduling information for about 90% of the regional transit services from GTFS. The information for the remaining 10% of transit services is derived based on their paper or electronic schedules. While the scheduling information for the existing two TOD periods ("AM" and "OP") remain the same, those for the two additional time periods ("PM" and "NT") were processed and added to the COG network database.⁴⁵ Given the manual effort involved, the transit line updating process is easily one of the most onerous network development tasks.

⁴³ Mark S. Moran, "Using Electronic Files from WMATA to Calculate Average Headways and Run Times for 1998 WMATA Bus Service," Internal Report (Washington, D.C.: Metropolitan Washington Council of Governments, February 18, 1999).

⁴⁴ Mark S. Moran, "Fall 1999 Ride On Bus Schedule Data: Using SAS to 1) Calculate Average Headways and Run Times and 2) Determine Which Routes Are Eligible for Coding as Two-Way Routes," Internal Report (Washington, D.C.: Metropolitan Washington Council of Governments, October 20, 1999).

⁴⁵ Jim Yin to Feng Xie "Development of Transit Networks for four Time of Day (TOD) Periods in the MWCOG Unified Network Database," Memorandum, April 7, 2022.

Table 4-9 GTFS files

Filename		
agency.txt	Required	One or more transit agencies that provide the data in this feed.
stops.txt	Required	Individual locations where vehicles pick up or drop off passengers.
routes.txt	Required	Transit routes. A route is a group of trips that are displayed to riders as a single service.
trips.txt	Required	Trips for each route. A trip is a sequence of two or more stops that occurs at specific time.
stop_times.txt	Required	Times that a vehicle arrives at and departs from individual stops for each trip.
<u>calendar.txt</u>	Required	Dates for service IDs using a weekly schedule. Specify when service starts and ends, as well as days of the week where service is available.
calendar_dates.txt	Optional	Exceptions for the service IDs defined in the calendar.txt file. If calendar_dates.txt includes ALL dates of service, this file may be specified instead of calendar.txt.
fare attributes.txt	Optional	Fare information for a transit organization's routes.
fare_rules.txt	Optional	Rules for applying fare information for a transit organization's routes.
<u>shapes.txt</u>	Optional	Rules for drawing lines on a map to represent a transit organization's routes.
frequencies.txt	Optional	Headway (time between trips) for routes with variable frequency of service.
transfers.txt	Optional	Rules for making connections at transfer points between routes.
feed_info.txt	Optional	Additional information about the feed itself, including publisher, version, and expiration information.

As noted above. GTFS information in the Washington, D.C. region is available for about 90% (87% to be specific) of the existing transit routes. As shown in Table 4-10, 14 of the 36 transit service providers included in the regional transit network currently post GTFS information. Although only about one third of transit agencies provide transit schedules in GTFS format, the 87% figure arises from the fact that the larger transit agencies (like WMATA and Ride-On) tend to offer GTFS data, whereas the smaller agencies tend not to offer GTFS data.

Seq.	Transit	Transit	GTFS	Paper
No.	Service	Provider	Data	Schedule
1	WMATA Metrorail & Metrobus	Washington Metropolitan Area Transit Authority	х	
2	ART Bus	Arlington County	х	
_		The Regional Transportation Agency of Central Maryland		
3	City of Laurel Bus	(RTA)	X	
4	CUE Bus	Fairfax City	X	
5	DASH Bus	City of Alexandria	х	
6	Fairfax Connector	Fairfax County	х	
7	RTA Bus	Regional Transportation Agency for Central Maryland	х	
8	Lee Coaches Commuter Bus	Maryland Transit Administration (MTA)	х	
9	МТА	Maryland Transit Administration (MTA)	х	
10	Omni Link	PRTC (Prince William County)	х	
11	Omni Ride	PRTC (Prince William County)	х	
12	Ride-On Bus	Montgomery County	х	
13	St. Mary's Transit System	Maryland Transit Administration (MTA)	х	
14	The Bus	Prince George's County	х	
15	TransIT	Frederick County	x	
16	Amtrak	Amtrak	х	
17	Bethesda Circulator	City of Bethesda		x
18	Calvert County Bus	Calvert County	x	
19	Carroll Transit System	Carroll County	x	
20	City of Annapolis Bus	Annapolis Department of Transportation	x	
21	Corridor Cities Transitway	Montgomery County		x
22	DC Circulator	District Department of Transportation (DDOT)	x	
23	DC Streetcar	District Department of Transportation (DDOT)	x	
20	Fredericksburg Feeder Bus to		~	
24	VRE	City of Fredericksburg		х
	Fredericksburg Regional			
25	Transit	City of Fredericksburg		х
26	LC Transit	Loudoun County		х
27	MARC	Maryland Transit Administration (MTA)		х
28	Metroway	Arlington County, City of Alexandria, WMATA		х
29	National Coach Commuter Bus	Martz Group		х
30	REX Bus	WMATA		х
31	TAGS	Transportation Association of Greater Springfield		х
32	US 1 BRT	Fairfax County		х
33	Tyson's Circulator	Fairfax County		х
34	Virginia Railway Express (VRE)	PRTC & NVTC		x
35	Washington Flyer	Metropolitan Washington Airports Authority (MWAA)		x
36	Vango	Charles County	x	
		Total	22	14

Table 4-10 Availability of GTFS data for transit providers in the Washington, D.C. area (TPB modeled area)

 $Ref: ``I:\ateam\docum\fy22\Version2.4_2022Update_Visualize2045_Network_Report_Tables\transit_service_v2.3.78.xlsx''$

Note: Although Metrorail schedule information is *available* from GTFS, TPB staff generally uses non-GTFS information for Metrorail, which is obtained directly from the transit agency. TPB staff also develops commuter rail schedule information (VRE and MARC, for both base year and future year) from non-GTFS sources.

TPB staff downloads GTFS data in text format directly from the primary transit providers or from the GTFS Data Exchange website (<u>http://transit.land/</u> or <u>http://transitfeeds.com/</u>) each fall. Once GTFS data are ready, TPB staff has developed an automated database procedure to convert these text files into Microsoft Access database tables and compute average transit route run times and average route headways by time-of-day period. The automated database procedure also extracts geometric (route itinerary) information for transit routes. The procedure for processing GTFS data is shown in Figure 4-3.

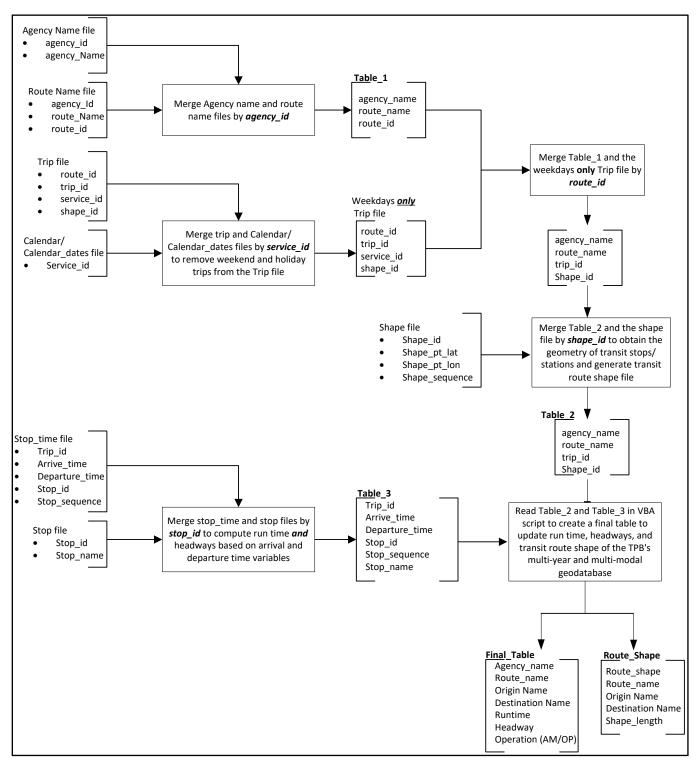


Figure 4-3 Process for combining GTFS data into the COG Geodatabase

Ref: "I:\ateam\docum\FY20\Version2.3.78_2020Amend_Visualize2045_Network_Report\Report Tables \GTFS_Data_Process_Flowchart.docx"

After the GTFS data are added to the GDB, transit services from providers that do not provide GTFS scheduling data are manually coded into the GDB using the schedule information published on those

providers' websites. This completes the base-year transit network files upon which all forecast-year transit network files will be developed.