

Green Build-Out Model:

Quantifying Stormwater Management Benefits of Trees & Green Roofs in the District of Columbia

Casey Trees Endowment Fund

Key: % Tree Cover in the District of Columbia

<20% 20-29% 30-39% 40-49% >50%

(Courtesy American Forests)

LimnoTech

- Environmental engineering firm
 - Ann Arbor, MI and Washington, DC
- Specialists
 - Water quality assessment
 - Watershed management
 - TMDLs
 - NPDES permitting
- Provide high end technical support to EPA HQ, EPA Region 3, MD, VA, and DC, local governments
- Assisted with WASA LTCP

Advisory Team

EPA

- Jenny Molloy (Water Permits Division, & Grant Project Officer)
- Robert Goo (Non-point Source Control Branch)
- Jonathan Essoka (Region 3, Anacostia Watershed Program)
- Reginald Parrish (Urban Stormwater Coordinator, Chesapeake Bay Program Office)

WASA

- David Bardin (Board of Directors)
- Dr. Siddique (DC WASA)
- DC Government
 - Dr. Karimi, Alexi Boado (Dep't. of Environment)
 - Chris Shaheen (Office of Planning)
 - John Thomas (Urban Forestry Administration)
- Federal Government
 - Jim Sherald, National Park Service, Center for Urban Ecology
 - Lance Davis, GSA Public Buildings Service Office of Applied Science, Sustainable Design Program
- Others
 - Nancy Stoner (NRDC)
 - Neil Weinstein (Low Impact Development Center)
 - Pete Johnson (CBF, Anacostia Program)

Green Infrastructure Opportunity in DC

Hypothesis

Washington, DC: 2002

Washington, DC: 2025

Grant Background

- DC WASA
- EPA Water Quality Cooperative Grant
- Grant Partners
 - Casey Trees
 - LimnoTech
 - Advisory Team
- 12 month contract ending May 1, 2007
- Budget \$202,600

Grant Objectives

- Quantify the contribution that trees and green roofs could make towards reducing stormwater runoff and volumes and frequencies of discharge to the District's rivers
- Identify policy recommendations to facilitate implementation of trees and green roofs as stormwater controls

Background

- Two distinct systems
 - CSS
 - MS4
- Outfalls to Anacostia River, Potomac River, Rock Creek
- All waters impaired from stormwater runoff and CSOs

LTCP

Grant Method

- Add to Mike Urban Model (MOUSE)
 - MS4 area
 - Green component
- Quantify interception storage at different coverage scenarios
 - Intensive Greening Scenario
 - Physically possible
 - Moderate Greening Scenario
 - More practical

Mike Urban Model

Hydrologic
 Stormwater Volume
 Hydraulic
 Untreated Discharge
 Discharge Frequency
 Mass Balance Equation
 Runoff - Precipitation - Storage

- Runoff = Precipitation Storage Infiltration Evapotranspiration
- Storage = interception storage * coverage area

Green Component

- Trees = 0.03 inch
- Green roofs = 1 inch

Land Use - Existing Streets

Land Use - Existing Parking Lots

Land Use - Existing Roofs

Land Cover Data

Tree Cover Assumptions

Land Cover Type	Existing Tree	Moderate	Intensive
	Cover	Greening	Greening
		Scenario	Scenario
Impervious			
Streetscapes (roads, sidewalks,			
intersections)	22%	25%	35%
Parking lots	7%	30%	50%
Paved drives	23%	50%	80%
Alleys	26%	35%	50%
Median islands, traffic islands,			
hidden medians, other	23%	30%	40%
Pervious			
Includes parks, open space,			
recreational areas, golf courses,			
soccer fields, cemeteries, front &			
back yards, school yards, etc	53%	57%	80%
TOTAL Tree Cover	35%	40%	57%

Building Coverage

Green Roof Ready Area

- Space needed for HVAC, access, and maintenance
- Total bldg footprint area
 = 260 million sf
- Green Roof Ready area
 - = 194 million sf

Distribution of Buildings in DC

Green Roof Coverage Assumptions¹

Roof Type	Existing Coverage	Moderate Greening Scenario ²	Intensive Greening Scenario ²
< 1,000sf	0%	2%	10%
1,000sf – 2,000sf	0%	6%	30%
2,000sf – 5,000sf	0%	10%	50%
> 5,000sf	0%	18%	90%
TOTAL	0%	10.5% 20 million sf	53% 103 million sf

Notes

1. These percentages are based on the building area (not the number of buildings)

2. The scenarios represent the building area that is "green roof ready".

Tree Box Scenario

- Increase tree box size in downtown area from 3x5 to 6x20
- Changes 105 sf of impervious to pervious per tree space

Tree Boxes (from average 4x6 ft to 6x20 ft)

Key Findings to Date

- Trees, Green Roofs, & Tree Boxes Combined
- Findings by Sewer System and Watershed
- Operational Savings
- Pollutant Load Reductions from Green Roofs
- General Hydrologic Relationships
 - Unit area reduction factors
 - Peak shaving

Summary of Stormwater Runoff and Sewer System Discharge Reductions

	Moderate Greening Scenario		Intensive Greening Scenario	
	MG	%	MG	%
Stormwater Runoff Reductions				
CSS	170	2.2	634	8.3
MS4	141	1.6	581	6.6
Entire Sewer System	311	1.9	1216	7.4
Sewer System Discharge Reductions				
CSS	141	6.1	514	22.0
MS4	141	1.6	581	6.6
Entire Sewer System	282	2.6	1095	10.0

Trees, Green Roofs, & Tree Boxes

For an average year:

- Intensive Greening Scenario
 - Prevented over 1.2 billion gallons of stormwater from entering the sewer system
 - Resulting in a reduction of
 - 10% or >1 billion gallons in discharge volumes to DC's rivers
 - 6.7% in cumulative CSO frequency (74 events)
- Moderate Greening Scenario
 - Prevented over 310 million gallons of stormwater from entering the sewer system
 - Resulting in a reduction of
 - 2.6% or 282 million gallons in discharge volumes to DC's rivers
 - 1.5% in cumulative CSO frequency (16 events)

Reduction in CSO and Stormwater Discharge to All Waterbodies

Reduction in CSO Discharge

vTrees

LimnoTech Water [Environment | Scientists | Engineers

Reduction in Storm Water Discharge from the MS4 Area

Water | Environment | Scientists | Engineers

Reduction in CSO and Stormwater Discharge to Rock Creek

Reduction in CSO and Stormwater Discharge to the Potomac River

Reduction in CSO and Stormwater Discharge to the Anacostia River

LimnoTech Water [Environment | Scientists | Engineers

Discharge Reductions by Sewershed

		Baseline (MG)	Tree Boxes (MG)	Trees (MG)	Green Roofs (MG)	ALL (MG)
0 1 2	Tiber Creek	43.39	40.90 (5.7%	39.53 8.9%	21.22 51.1%	14.88 65.7%
0 1 3	Canal Street Sewer	20.06	19.98 (0.4%	19.56 2.5%	16.07 19.9%	15.49 22.8%
0 1 4	Navy Yard	79.00	78.99 (0.0%	77.62 1.7%	67.25 14.9%	65.86 16.6%

Runoff Reduction: All Green Infrastructure

Unit Area Reduction Factors

Type of Greening	Stormwater runoff volume reduction per unit area (MG/acre/year)	Acres required to achieve a one MG reduction in stormwater over an average year (acres/MG)
Green roofs	0.38960	2.5667
Trees over impervious areas	0.11117	8.9952
Trees over pervious areas (NRCS Soil Type D)	0.02210	45.249
Trees over pervious areas (NRCS Soil Type C)	0.00276	362.32
Trees over pervious areas (NRCS Soil Type A & B)	0.00008	12,500

Can be used for quick planning calculations in the Washington, DC area or for other urban areas with similar climate conditions and rainfall distribution patterns

Peak Shaving

Operational Savings

- Operational savings for WASA
 - Operational costs assumed to decrease proportionally for every gallon avoided
 - Utility costs for pumping (electricity)
 - Treatment costs including those associated with biosolids disposal, treatment chemicals, and supplies
 - Exploratory review of literature = \$0.01/gallon
- Savings approximately \$1.4 \$5.1 million/year

Pollutant Loading Reductions

Dellutert	Intensive Greening Scenario			
Pollutant	lbs reduced/year	% reduction		
Total Suspended Solids	77,000	0.8%		
Biochemical oxygen demand (BOD)	34,000	1.5%		
Total phosphorous	340	0.6%		
Total Kjeldahl nitrogen (TKN)	11,000	4.6%		
Ammonia	3,400	4.1%		
Copper	120	2.3%		
Lead	180	1.8%		
Zinc	3,100	16.1%		

Green roofs

- Replaces pollutant contributions from conventional roofs
- Highly effective at storing and filtering pollutants
- Conservative estimate of expected pollutant load reduction
 - Does not include pollutant scouring reductions from peak shaving

Overall Key Findings

- Substantial reduction in runoff & discharge volumes
- Limited reduction in CSO frequencies
- Reduction in stormwater peak flow & velocity
- Operational savings in CSS
 - Less to be pumped and treated
- Limited stormwater control options in urban areas
- Trees and green roofs complimentary land cover types
- Multiple other benefits for same investment
 - Air quality, urban heat island effect, energy, climate change, public health, social capital, economic development, aesthetics, urban ecology, etc

Grant Products

- Data Results Display Tool
- Mini-Model
- Final report documentation 5/15/07
 - www.caseytrees.org

Data Display Tool

Green Build-Out Model Results Display Tool

Quantifying Stormwater Benefits of Trees and Green Roofs in the District of Columbia

> This display tool presents the model results for the Moderate and Intensive Greening scenarios for green roofs and trees. Results are presented as reductions in stormwater flow and can be viewed on a city-wide, neighborhood, or sewershed scale.

> To begin, choose an area that you are interested in from the list below.

Choo	se area from map to view model resu	ılts;
Frie	ndship Heights	•
16	Watts Branch North - Deanwood	
17	Watts Branch South - Benning	
18	Fort Dupont Park	
19	Penn Branch - Randle Highlands	
20	Buena Vista - Douglas	
21	Oxon Run - Congress Heights	
22	Bolling AFB	
23	Hains Point	-

Watershed/Sewer System	Baseline Flow (MGY)	Moderate Greening Scenario Flow (MGY)	Moderate Greening Scenario Flow Reduction	Intensive Greening Scenario Flow (MGY)	Intensive Greening Scenario Flow Reduction
Anacostia CSS	4,219	4,129	2.13%	3,888	7.83%
Potomac CSS	1,013	983	2.96%	902	10.96%
Rock Creek CSS	2,437	2,386	2.09%	2,244	7.92%
Total CSS	7,668	7,498	2.2%	7,034	8.3%
Anacostia MS4	3,719	3,659	1.61%	3,478	6.48%
Potomac MS4	3,177	3,122	1.72%	2,952	7.07%
Rock Creek MS4	1,860	1,833	1.44%	1,744	6.22%
Total MS4	8,755	8,614	1.61%	8,174	6.64%
Anacostia	7,938	7,788	1.88%	7,366	7.20%
Potomac	4,189	4,105	2.02%	3,854	8.01%
Rock Creek	4,296	4,219	1.81%	3,988	7.19%
Total	16,423	16,112	1.90%	15,208	7.40%

*Map depicts percent flow reduction associated with Intensive Greening scenario and all green infrastructure types.

Mini-Model

Green Roof Mini-Model Editor

Help View Data Report

Return to Main Menu

_

Existing Conditions Model Scenario Builder				District-Wide M	odel Results					
	Available Roof Area		Choose Green Roof Area for	Model Gre	enroof	System/	Runoff Volume Without Green	Runoff Volume With Green	Reduction In Runoff Volume	Percent Reduction In Runoff
Roof Type	(sf)		Model Run	Area (sf)	%	Watershed	Roofs (MG)	Roofs (MG)	(MG)	Volume
< 1,000 sf	42,934,330		0% 4 100% 2% 10%	13,738,985	32%	CSS Total	7,668	7,379	289	3.8%
1,000 - 2,000 sf	46,417,327		0% 4 100%	14,853,545	32%	MS4 Total	8,755	8,480	275	3.1%
2,000 - 5,000 sf	24,765,320		0% 10% 50% 100%	7,924,902	32%	Anacostia Total	7,938	7,673	265	3.3%
> 5,000 sf	80,738,983		0% 18% 100% 90%	25,836,475	32%	Potomac Total	4,189	4,050	140	3.3%
TOTAL	194,855,959	ł	0% 4 10.5% 100%	62,353,907	32%	Rock Creek Total	4,296	4,137	160	3.7%
			Intensive Greening S	cenario		TOTAL	16,423	15,859	564	3.4%

Advisory Team Policy Recommendations

- Stormwater & sewer fee, incentive program
- Impervious surface limits
- Greenroof Cover Objectives, Strategy, & Leadership
- District-wide Urban Tree Canopy goals & Management Plan
- Tree cover objectives by land cover area e.g. Parking Lots = 40%
- Increase tree box size from minimum 3x5 ft to 6x20 ft
- Fill and maintain all street tree spaces
- GIS database for tracking & monitoring

Areas for Further Study

- Demonstration of "Intensive Greening" in target sewershed(s)
- Add other LID in model
- Re-run Mike Urban model with research findings for the LTCP
- Comprehensive cost/ benefit analysis for implementation
- Performance & maintenance standards
- GIS database to track performance
- Implementation tools for site scale

Contact Information

Barbara Deutsch bdeutsch@post.harvard.edu 202.550.3679

Heather Whitlow hwhitlow@caseytrees.org 202.833.4010 Mike Sullivan <u>msullivan@limno.com</u> 202.833.9140

Brian Busiek bbusiek@limno.com 202.833.9140

www.caseytrees.org

Backup slides

Casey Trees Programs

Education

- Citizen Forester
- Schools Programs
- Internships

Data Gathering & Analysis

- Inventory
- Tree Map: <u>www.caseytrees.org/treemap</u>
- Green Infrastructure Mapping Collaborative
- Urban Tree Canopy Goals
- Tree Planting & Stewardship
 - Community Plantings & Request for Plantings (RFP)
 - Other Plantings
 - Tree Stewardship
- Planning & Design
 - Policy & Design Input to Comp Plan, Great Streets, New Communities, Tree Bill
 - Tree Space Design
 - Work with BIDs & Developers

Model input is based on hourly data

- Typical rainfall conditions
 - 1988 representative dry year (green)
 - 1989 representative wet year (red)
 - 1990 representative average year (yellow)
 - Actual data

Model Input: Precipitation

- 70% of rain events < 0.5 inches</p>
- 85% of rain events < 1 inch</p>
- 97% of rain events < 2 inches</p>

Model Input: Potential Evapotranspiration

- Water budget loss mechanism
- Published by VA climatology office

Mike Urban: Hydrologic Parameters

6	Parameter	s Kinematic	Wave					
	Parameter se	t ID:	CSS_GL)BAL			Insert	
	- Initial losses — Wetting: Storage:	Ir Stea 1.500	npervious ep Flat De 1.500e 7.000e	Small 1.500e- 1.000e-	Pervi Mediu 1.500	ious im Large le- 1.500e- le- 1.000e-	Delete Advanced Close	
	Horton's infiltra Maximum: Minimum: Horton's expo Wet condition	ation capacity- nent		0.752 0.050 1.670e-	2.246	3.749 0.300 e- 8.300e-]	
	Dry condition	: nber: 0.016	50 0.0160	2.390e- 0.2500	2.780	0 0.2500		
	Parameter	Wetting ste	Wetting flat	Wetting	g sm	Wetting me	Wetting larg	SI 🔨
	AMI-NM5	6.000e-004	8.040e-004	6.0006	e-004	6.000e-004	6.000e-004	•
	AMI-NM6	6.000e-004	1.128e-003	6.0006	e-004	6.000e-004	6.000e-004	
	AMI-NM7	6.000e-004	8.520e-004	6.0006	e-004	6.000e-004	6.000e-004	
	Bolling/NRL	6.000e-004	3.960e-004	6.0006	e-004	6.000e-004	6.000e-004	•
E	CSS_GLOBA	1.500e-002	1.500e-002	1.500e	e-002	1.500e-002	1.500e-002	
<		0.000	4 200- 007	L C 000-	004	0.000- 004	0.000-004	>

- Trees = 0.03 inch
- Green roofs = 1 inch
- Infiltration capacity and recovery
- Surface roughness
- Calibrated to actual flow data

Tree Storage

- Storage = LAI * 0.2mm
- LAI = 4.10
- Storage = 0.032 inches

Interception Storage (1 inch, for 3-4" extensive)

Type of Green Roof

- Extensive 3-4 inches soil media depth
 - Literature review
 - Purpose as a stormwater BMP
 - Design consistency
 - Opportunity
 - Costs
 - Market trends
 - Conservatism

Grant Method

			Flow with		
Unco	ontrolled	Flow with Intensive	Moderate Greening		
Flow	Flow Greening Scei		Scenario		
		MG	MG		
	MG	(% reduction)	(% reduction)		
Combined Sewer System					
Apacostia CSS 1	608	1,341	1,548		
	,000	(16.6%)	(3.7%)		
Potomac CSS	620	472	595		
Fotomac CSS	020	(24.8%)	(5.2%)		
Rock Creek CSS	56	43	53		
NOCK CIEEK COO	50	(22.3%)	(4.6%)		
Total	202	1,856	2,196		
10(a) 2	.,292	(19.0%)	(4.2%)		
Storm Sewer System					
Apacostia Storm Flow	2 710	3,545	3,684		
Anacostia Storm Flow 3	5,719	(16.6%)	(3.7%)		
Detempo Storm Flow	0.477	2,996	3,140		
Fotomac Storm Flow 3	D, 177	(24.8%)	(5.2%)		
Book Crook Storm Flow	960	1,768	1,841		
ROCK CIEEK Stollin Flow	,000	(22.3%)	(4.6%)		
Total	756	8,309	8,665		
Total C	5,750	(19.0%)	(4.2%)		
Entire System					
Anacostia Total Wet	227	4,886	5,232		
Weather Flow	0,321	(8.3%)	(1.8%)		
Potomac Total Wet	905	3,468	3,735		
Weather Flow	,000	(8.9%)	(1.8%)		
Rock Creek Total Wet	016	1,811	1,894		
Weather Flow	,910	(5.5%)	(1.1%)		
Total Wat Weather Flow					
· · · · · · · · · · · · · · · · · · ·	1 0/0	10,165	10,861		

Run Scenario Options

- Tree cover alone
- Green roof cover alone
- Larger tree boxes
- All green infrastructure combined

How look at results

- By watershed, sewershed
- By CSS/MS4
- Average year rainfall (1990) (same as LTCP)
- Design storm (6-hr/ 1")
- Determine Significance
- Develop Policy recommendations

What We Expected to Find

- Trees and Greenroofs provide significant stormwater benefit for small storms (85% of all rain events in DC are < 1 inch)</p>
- Still need tunnels for large storm events
- Trees & greenroofs may not pencil-out on stormwater alone
 - Other benefits (air quality, urban heat island, increased property values & rents)
 - Comprehensive solutions (e.g. total water budget, not just stormwater)
- Other
 - Greenroofs intercept & store more rainwater than trees, per unit area
 - Trees provide their most benefit over impervious
 - Increasing tree box size significant benefit because reducing impervious cover

Findings-Trees, Discharge Volume

AVERAGE YEAR POINT DISCHARGE VOLUME							
Scenario:	BASELINE	Intensive Greening	Moderate Greening				
Year:	AVG (1990)	AVG (1990)	AVG (1990)				
Units:	MG	MG (% reduction)	MG (% reduction)				
		1					
Anacostia	5,327	5,221 (2.0% reduction)	5,288 (0.7% reduction)				
Potomac	3,804	3,741 (1.7% reduction)	3,778 (0.7% reduction)				
Rock Creek	1,915	1,891 (1.3% reduction)	1,907 (0.4% reduction)				
Total	11,046	10,853 (1.8% reduction)	10,973 (0.7% reduction)				

Findings– Trees, Cumulative Frequency

AVERAGE YEAR CUMULATIVE POINT DISCHARGE FREQUENCY					
Scenario:	BASELINE	Intensive	Moderate		
Year:	AVG (1990)	AVG (1990)	AVG (1990)		
	No.	No.	No.		
Units:		(% reduction)	(% reduction)		
	592	585	592		
Anacostia		(1.2% reduction)	(0.0% reduction)		
	391	388	389		
Potomac		(0.8% reduction)	(0.5% reduction)		
	119	119	119		
Rock Creek		(0.0% reduction)	(0.0% reduction)		
	1,102	1,092	1,100		
Total		(0.9% reduction)	(0.2% reduction)		

% Runoff Reduction: Trees

Findings– Green Roofs Discharge Volume

AVERAGE YEAR POINT DISCHARGE VOLUME				
Scenario:	BASELINE	Intensive Greening	Moderate Greening	
Year:	AVG (1990)	AVG (1990)	AVG (1990)	
Units:	MG	MG (% reduction)	MG (% reduction)	
Anacostia	5,327	4,886 (8.3% reduction)	5,232 (1.8% reduction)	
Potomac	3,804	3,467 (8.9% reduction)	3,735 (1.8% reduction)	
Rock Creek	1,915	1,811 (5.5% reduction)	1,894 (1.1% reduction)	
Total	11,046	10,164 (8.0% reduction)	10,862 (1.7% reduction)	

Findings – Green Roofs Cumulative Frequency

AVERAGE YEAR CUMULATIVE POINT DISCHARGE FREQUENCY					
Scenario:	BASELINE	Intensive Greening	Moderate Greening		
Year:	AVG (1990)	AVG (1990)	AVG (1990)		
Units:	No.	No. (% reduction)	No. (% reduction)		
Anacostia	592	547 (7.6% reduction)	583 (1.5% reduction)		
Potomac	391	368 (5.9% reduction)	385 (1.5% reduction)		
Rock Creek	119	113 (5.0% reduction)	118 (0.8% reduction)		
Total	1,102	1,028 (6.7% reduction)	1,086 (1.5% reduction)		

% Runoff Reduction: Green Roofs

Findings – Treeboxes Downtown Character Area

AVERAGE YEAR RESULTS					
Scenario:	BASELINE	Moderate/Intensive			
Year:	AVG (1990)	AVG (1990)			
	1,441 MG	1,418 MG			
Total Point Discharge Volume		(1.57% reduction)			
Cumulative Point Discharge Frequency	205	203 (0.98% reduction)			

Note: The downtown character area includes portions of CSO 010, 012, 019, 020, 034, and 035

Percent Runoff Reduction - Treeboxes

WASA Participation

- WASA was invited to participate in the Work Group; staff have attended all 3 sessions to date
- LimnoTech was a WASA subcontractor during the LTCP development process on modeling, and used WASA hydraulic model for this project
- WASA input:
 - This is an important study & will stimulate green technology implementation in DC
 - Impact on LTCP tunnel size probably would be minimum; but, volume reductions would be 'bonus' and save in pumping & treatment costs
 - Technologies such as tree boxes, if properly managed, would help with storm water NPDES permit compliance
 - Require regulatory agencies' approval as technologies sufficient to meet TMDLs and water quality standards.

